a2 United States Patent

US009356574B2

US 9,356,574 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(71)

(72)

")

@

(22)

(65)

Denninghoff
(54) SEARCH AND NAVIGATION TO SPECIFIC
DOCUMENT CONTENT
Applicant: Karl L. Denninghoff, Snohomish, WA
(US)
Inventor: Karl L. Denninghoff, Snohomish, WA
(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 193 days.
Appl. No.: 14/084,372
Filed: Nov. 19, 2013
Prior Publication Data
US 2014/0164352 Al Jun. 12, 2014

(60)

(1)

(52)

Related U.S. Application Data

Provisional application No. 61/728,696, filed on Nov.

20, 2012.

Int. Cl.

GO6F 17/30 (2006.01)
HO3H 9/02 (2006.01)
HO3H 9/10 (2006.01)
HO3H 9/25 (2006.01)
U.S. CL

CPC ...

HO3H 9/02622 (2013.01); GO6F 17/30864

(2013.01); GOGF 17/30873 (2013.01); HO3H
9/1092 (2013.01); HO3H 9/25 (2013.01)

its DOM, and the user's Fragment
Identifier dlsplay preferences.

Input; An ordered set of one or more
Fragment Identifiers, a document with

~.

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

5,446,888 A 8/1995 Pyne
7,287,019 B2 10/2007 Kapoor et al.
8,135,694 B2 3/2012 Towers et al.
8,166,020 B2 4/2012 Turkel et al.
2006/0173817 Al* 82006 Chowdhury ... GO6F 17/30696
OTHER PUBLICATIONS

International Search Report; International Application No. PCT/
US13/70808, Applicant: Karl L. Denninghoff, dated Mar. 25,2014, 9
pages.

* cited by examiner
Primary Examiner — Anh Tai Tran

(57) ABSTRACT

A computer-implemented system and method for search and
navigation on a network to find and display specific search
identified information in documents. Queries are sent to
search engine services and responses comprising snippets are
returned. Then, in response to only one or a few user inputs,
documents are opened and locations of content matching or
best matching the snippets are found reliably and distin-
guished in a display.

38 Claims, 45 Drawing Sheets

Yes

‘v

Select the first as yet
unprocessed Fragment
Identifier. Subsequent actions
in this loap apply to it.
2615

l

Parse the start of the Fragment
Identifier to obtain the version
number,

Is there
an unprocessed
Fra oment identfer? Were ranges pmduoenﬁ/ Yes—b
zsm

Retum failure.
2680

Y

Yes

v

Is the version numberé—m s the version number 27 Nop
-

Process the accumulated ordered set
of DOM ranges info the DOM in
accordance with the capabilities of the.
user agent and user preferences,
2678

 —

Retum the set of Fragment
Identifiers with their match status
a8 well as the soroll positions of
the display elements.
2678

N

7

Yes
v

accordance

[

Decode the Fragment [dentifier in

used for version 1 Fragment

Decode the Fragment Identifier in
accordance with the encoding
used for version 2 Fragment
(dentifiers,

with the encoding

fentifiers.

N

hg
[4——No-

Did the decoding

decoded version 1

Fragment dentifier

against the DOM.
2830

%20 2640
Process the Process the
decoded version 2 Didthe dmdmg\

Fragment Identifier

Yes<
against the DOM.

]

succeed?
2650 /
] ~]

Add the range or ranges produced, if any, to the
accumulated set of DOM ranges in order. Mark the
Fragment [dentifier as processed and according to

the quality of the match or matches found.

2670

U.S. Patent

May 31, 2016 Sheet 1 of 45

In the text from the document, find all
matches for the textual substring taken
from the Fragment Identifier.

101

Is there
an unprocessed substring
match?
105

Yes

v

Select an unprocessed substring
match, the rest of this loop applies
to that match.

Starting at the position of the substring
match, calculate the hash function of the
Fragment ID over the length of the target
string indicated in the Fragment Identifier.

120

Does the
calculated hash value
match the hash value in the
Fragment Identifier?
125

Yes

v

Add the position to the set of
matches found in the document.
130

FIG. 1
Prior Art

US 9,356,574 B2

No——p

Process the set of
matches found.
108

U.S. Patent May 31, 2016

Start with an array of UTF-16 16-bit code units to be
searched, the positive integer value of n, the value
<DistHash> of the rolling hash function h over a UTF-16
code unit sequence of length n, the number <bitCount>
of high order bits used, and optionally the match string
itself. h is preferably chosen at random (with real
entropy) from the GENERAL family of hash functions. Let
<bitMask> be a mask that retains only the high order
<bitCount> bits of a hash value via a bitwise and
operation.

205

Let <countMatches> (the count of hash matches found)
be set initially to 0 and let <arrayMatches> be an initially
empty array of indexes into the document. Array
elements indicate where the hash matches in the
document.

210

)

Let <LeastUnequalMatch> be an unsigned integer value
having the same number of bits as the output of the hash
function h, and set its initial value to all binary ones
(which is the largest possible value of the hash function
where the hash bits are interpreted as an encoding of an
unsigned integer).

215

v

Let the first n code units of the document be the current
n-gram. Calculate h over the current n-gram and let
<curNgHash> represent the value of the current n-gram
hash.

Let <indexNGram> represent the index of the first code
unit of the current n-gram in the document; initially it is
zero.

220

o 200

Sheet 2 of 45

US 9,356,574 B2

Let <cdh> be an integer whose standard binary
representation is obtained by the bitwise exclusive or
(XOR) of <DistHash> and <curNgHash>, masked by a
» bitwise and operation (AND) with <bitMask>.
In other words:
<cdh> = (<DistHash> XOR <curNgHash>) AND <bitMask>
225

/ Is the value -
y—<\/ of <cdh> equal to 07
Yes ‘\ 230 -

N I 7
// \\\ 1\\ //
7 Is the T P 4

" match string an //Is < dh>\\
T input? N
L 2{332) less than ™
~o 7 ~..<LeastUnequalMatch>?_~
[S e
Yes N~
/Y\
o .
No P e
P Is the S
" match string the same ™.
~._as the current n-gram? "
S 233 /// Yes
e e No
v
Yes
\ J
Set
<arrayMatches>[<countMatches>| Set

to the value of <indexNGram>. <LeastUnequalMatch>

Increment <countMatches>.
235

to the value of <cdh>.
250

e

" theramore .

el

=z
C

; .

< document text after the
“-._current n-gram? -~

P}

Let <requiredBits> be the number of
contiguous 0-valued high-order bits in the
value of <LeastUnequalMatch>, plus 1.
However, <requiredBits> cannot exceed the
number of bits in the hash output.

260

. 240

T

Yes

v

Advance the rolling hash function h by a 16 bit

;

Unicode code unit, obtaining <curNgHash> for
the next n-gram. Increment <indexNGram>.

Return <requiredBits>, <countMatches>, and
<arrayMatches>.
265

255

FIG. 2

U.S. Patent

May 31, 2016 Sheet 3 of 45

In the text from the document, using a
rolling hash function h, find all n-gram
hash matches for the target string,
where n is the length of the target and
the n-gram hash value is presented in
the Fragment Identifier.

305

Check each match from the previous
step against a primary hash function
calculation. Any match that passes
this test remains in the match set.
310

In the text from the document, using a
rolling hash function h, find all n-gram
hash matches for the target string,
where n is the length of the target and
the n-gram hash value is presented in
the Fragment Identifier.

405

Process the set of
matches found.

FIG. 3

Process the set of
matches found.

FIG. 4

US 9,356,574 B2

U.S. Patent May 31, 2016 Sheet 4 of 45 US 9,356,574 B2

Selection
505
vnT Text Text vnT vnT vnT
510 'Node1 Node1 | Node2|Node2|Node3 Node4| ToXtNode3
*F‘Oo‘d‘ Flo|r T|hio|u|g|h|t|:
NN\
AN

550 foodf‘orthou ‘ht‘ 580
9 | Lett Right
N
Text Text
Offset Type 585 586
Offset Val 0 0
Prefix |Target| Suffix set value 587 588
565 | 570 | 575
Selection
605
vnT Text Text vnT vnT vnT
510 Node 1| Node1 |Node 2| Node2|Node 3|Node4| 'extNodes3
*|F|o|o|d Fo‘r Th‘ought‘:
\ N) 7
\\1\\\\\\\\ \\i . \\\ . 7////;/;/ /
NN RN O S
\\\\\\\ ///,////
OOV N S
545 SO \\ \\ O\ S S
NN \\\ NN /,///// S /s
SN \ \\\ ///// s ///
NONN NN S S /
550 foodfo‘rthought
N Left Right
/ N
Offset Type Text Text
Prefix |Target | Suffix Offset Value 0 0
660 | 665 & 670 87 | 6g8

FIG. 6

U.S. Patent May 31, 2016 Sheet 5 of 45 US 9,356,574 B2

Selection

105
Text vnT vnT vnT
510 NXSJ ; szgt1 Node 2 |Node 2| Node 3 |Node 4 Texw‘gdes
J20 | 725 | 730 | 735 —
* T‘h‘oug‘h‘t‘:
NN
NN
550 foodf‘orth‘oug‘h‘t‘ 780 :
\ e S Left Right
vnT VnT
Offset Type 785 786
.) 2 -1
Prefix | Target| Suffix Offset Value
760 | 765 | 770 187 188
Selection
805
Text vnT
510— N:)/(?;— : N222t1 Node 2 |Node 2 NXSJB Nzgg 4| TextNode3
720 125
T‘h olu g‘h‘t‘:
S
tlhjou g‘h t
™~ 880 — -
1 ‘ ~_ | Left Right
N
Offset Type vnT vnT
Prefix)
760 Target| Suffix Offset Value 1 1

FIG. 8

U.S. Patent May 31, 2016 Sheet 6 of 45 US 9,356,574 B2
Selection
9205
vnT Text Text
510—|Node 1| Node1 |Node2 VhT | YT = VAT | TextNode 3
910 915 720
* F‘o‘o‘d‘ F‘o‘r‘ T‘h‘oug‘h‘t‘:
AN NN WA,
N\ S
AN \\\ S S S
AN S
545 \\\\\\\ /%%%/
NN S
550 f‘o‘o‘d‘f‘o‘r t‘houg‘h‘t
g 980
ya B Left Right
/ vnT Text
’P e) Offset Type 985 086
refix | Targe)
Suffix
960 | 965 -1 1
Offset Value 087 088
1005—— t‘h i|s i‘s‘t‘h e‘c‘a‘n onlilc a‘l‘f‘o r‘m‘t‘e X t‘o‘f a‘d‘o c um‘e‘n t‘s‘e‘l e‘c‘t i o‘n
0 Block 1 | Block 2 | Block 3 | Block 4 | Block5 | Block 6 | Block 7 | Block 8 | Block 9 |Block 10| Block 11 |Block 12
101 1015 1020 1025 10@

FIG.

10

U.S. Patent

May 31, 2016

At the user agent: A user selects part of a document
and indicates his desire to create a Fragment URI
and Fragment Hyperlink to the selection.

1105

N

1100
v

At the user agent: Calculate the URI prefix for new URIs
by excising any Fragment Identifiers of this embodiment.
Also calculate the full (preferred 84-bit) hash of the
Common DOM Form.

1110

At the user agent: Create and send a HTTP request to
the URI Service to open a document for creating
Fragment URIs and Fragment Hyperlinks. The HTTP
request includes the URI prefix of the document and
selected text.

1120

v

At the service: The service responds to the HTTP
request with a document giving the user various control
choices including changes to default behaviors for

Sheet 7 of 45

—»

" a Common DOM Form for the URI -
- prefix that matches the Common

Send the Fragment Identifier, the Conventional Fragment Identifier
(if there is one), the URI prefix, and the full (preferred 64-bit) hash
of the Common DOM Form to the URI Service.

1140

US 9,356,574 B2

" Atthe service:

__~"Does the URI Service have ~__

No

” Al the service: Is there

DOM Form hash?

~_~"" alatest Common DOM Form for
\\\Ehe URI prefix, and if so does the new .-~
h Fragment Id maich -

T _perfeclly init? 7]

~. 1153 " No
v

construction of Fragment URIs. This web page may ves Transmit the Common DOM Form from the user agent to the
include advertisements that are targeted to the user service, where it is verified and stored in assaciation with the
based on the selected text and the document from which full 84 bit hash of the Common DOM Form and the URI
it was selected. prefix. Set now as its first encountered time stamp.
1130 1155
v y v
At the user agent: Create a Fragment Identifier using the At the service: Verify the association between the new Fragment
target document and the selection. Create if possible a Identifier and the Common DOM Form, and then persist the
Conventional Fragment Identifier to a suitable anchor. L association with the Conventional Fragment Identifier (if one

1135

exists). Set now as the value of its last-encountered time stamp.

At the user agent: Create HTML markup for each range of the selection, including any contained
VnT nodes. Remove input and anchor (‘a’) nodes by collapsing the input nodes and replacing
hyperlinks with their children in the DOM instance. Concatenate the HTML for the ranges in

order. Depending on users choice, either create a Fragment Hyperl

with an HTML anchor or append an HTML anchor to the created HTML. Let the “new URI” and
the “conventional URI” be the URI prefix appended with the new Fragment Id and the URI prefix
appended (if it exists) with the Conventional Fragment Identifier respectively.

1163

1158
v

At the service: Create a
unique Surrogate URI for the
URI prefix and new Fragment
Identifier combination. Send it

to the user agent.
1160

ink by surrounding this HTML

A

.
" Does the ™.y
_~"document identified .

by the URI declare

" lIsitthe user
P choice to construct
“.._Fragment Hyperlinks using .-~

\T\Surrogate URIs?

s itthe user's choicé\\\
<__ to construct only Safe-Mode

Yes . 1165 7 N MagLink Nop—" S . Hyperinks? o~
v N . Friendiness? 7 7 Tl 1168 7
S M0 7 Agitthe user's choice to construct™ o
Set the Surrogate URI as S 7 i P
the href attribute value. 7 . only Normal-Mode Hyperlinks? -~ {

There is no maglink_href I Yes e nws 7

value created for this Yes ¢ T e No Yes

Fragment Hyperlink. v N

1180 Set the new URI as the href
attribute value. There is no \ 4

v

Place the generated HTML in
the clipboard for type html,

Fragment Hyperlink.
1178

maglink_href value created for this

Set the canventional URI as the href attribute value and the
new Fragment URI as the maglink_href attribute value.
1175

and place the href attribute in
the clipboard for type text.
1185

L]

FIG. 11

U.S. Patent May 31, 2016

/’/\\
//// \\\
-~ Doesthe ™.
//user want image text‘\\

Sheet 8 of 45

Create an array of the text and VnT nodes from the

to never be included; or document DOM. According to the Boolean <use_alt>, P
does the selection contain no create a Canonical Form for the document text with s there
- image with a non-rivial ‘alt’ every code unit in the Canonical Form mapped to its _En unprocessed ran\dé\
text attribute? originating position in the full document text. < in the selection? .~ €
1202 Translate the DOM ranges into node-array ranges. I g

- 1210

- Does the ™. ? A
. user want image ™.
L text always included; or does ™.
< the user prefer to be asked
"\ onthe fly about image text
“~_ and does he wantit

—No ;Yes—
Pick an as yet unprocessed range,
subsequent actions in this loop apply to it.
1215

“._included here? .~
1204

Set a Boolean
<use_alt> to include
image ‘alt’ text.
1206

v
Find the code unit in the Canonical Form on each end of
the range that maps to the code units just outside the range
in the array. Use an imaginary code unit at each end of the

Remove Fragment Identifiers of this embodiment from the URI of
the document to obtain the URI prefix, then calculate its hash.
Also create the time stamp for the resulting Fragment Identifier.
1250

Create a Fragment Identifier that sequentially encodes the following
elements as character sequences from a 64 character alphabet:
two character string ‘#Z’, which starts every Fragment Id.
integer: version number identifying this fragment encoding
integer: UTC seconds since January 1, 1601
bit array: hash bits of the URI prefix
Boolean: document declares MagLink Friendliness
integer: length the special Alternative Canonical Form used to
compute the hash of the Common DOM Form
bit array: hash of Common DOM Form of the document
integer: count of ranges
for each range:
Boolean: created by a search engine for search results
Boolean: images with non-trivial ‘alt’ attributes as text nodes
Boolean: prefix closer to front
Boolean: suffix closer to front
Boolean: target closer to front
Boolean: Left offset is in VnT nodes (not code units)
Boolean: Right offset is in VnT nodes (not code units)
integer: HashWidth, width of content hashes in bits
integer: length of prefix in code units
integer: length of suffix in code units
integer: length of Canonical Target in code units
integer: left offset
integer: right offset
bit array: hash of prefix having HashWidth bits
bit array: hash of suffix having HashWidth bits
bit array: hash of target having HashWidth bits
integer: segment length in the partitioned Canonical Target
integer: the width, in bits, for hashes of each segment
bit array: the partitioned-hash of the Canonical Target
bit array: hash of the fragment itself (excepting this hash value)
1255

Return the new Fragment |dentifier.
1260

Canonical Form for this purpose when the selection covers
either end of the Canonical Form. In the Canonical Form
these are the left and right edge code units.

1220

v

Find a short unique Canonical Form prefix ending on the left
edge code unit. Calculate the hash and the minimum number
of hash bits required to establish unigueness.

1225

v
Find a short unique Canonical Form suffix beginning on the
right edge code unit. Calculate the hash and the minimum
number of hash bits required to establish uniqueness.
1230

h 4
Calculate the hash over the target range sequence in the
Canonical Form and the minimum number of hash bits to
distinguish the string using the hash. Note that this may not be
a unigue string and could even be empty.
1235

v
Establish the number of bits required for content hashes (the
value of HashWidth), as the maximum of the required bits for
the canonical prefix, suffix, and target summed with 6 and
rounded up to the next multiple of 6.
1237

v
Determine offsets and types of offsets for the range.

1240

v
Partition the Canonical Target into a sequence of segments of
the same size except for the last which is possibly shorter.
Calculate the hash for each segment of the partition. From
each hash select the first m bits and concatenate them into a
bit array, preserving the order of the code units in the target.
This is the partitioned hash of the Canonical Target.
1245

FIG. 12

US 9,356,574 B2

U.S. Patent

1300

May 31, 2016

Input is the position of the left
edge code unit (resp. right edge
code unit) in the Canonical Form,
and the Canonical Form itself.
1305

)

Set the value of n
initially to 5.
1310

Ade units in the Canonm

—Qrm ending (resp. beginning) in the
left (resp. right) edge

\ code unit? /
ﬁﬁ/

Yes

v

Sheet 9 of 45

No ¢

Let the current prefix (resp. suffix) be n code
units ending (resp. beginning) in the left
(resp. right) edge code unit. Calculate the
hash over the n code units.

1325

Let n be set to the number of code
units in the Canonical Form
ending (resp. beginning) in the left
(resp. right) edge code unit.
1320

v

Perform a rolling hash search over the
Canonical Form for n-grams having
matching hash values with the prefix (resp.
suffix). Also calculate the number of hash
bits required to distinguish.

1330

e

Aere more thanm

n-gram with a matching hash

value?

Yes

A
/’-\re therN
additional code units
in the Canonical Form to the left
(resp. right) of the current prefix
\ (resp. suffix)? /
\
Yes

v

Double the value of n.
1350

No

US 9,356,574 B2

Return the hash value for the current
prefix (resp. suffix), the number of bits
required to distinguish, and the number of
code units in the hash (the value of n).
1355

FIG. 13

U.S. Patent

May 31, 2016

Sheet 10 of 45

US 9,356,574 B2

Let

<left_edge node, left_edge position>,
<first_node, first_position>,
<last_node, last_position>, and

Inputs: The node array, the range of the node array,
and the Canonical Form with the left edge code unit
index, first code unit index, last code unit index, and

<right_edge_node, right_edge_position>
be the mapping pairs of the code units of the
Canonical Form at the indices

A 4

right edge code unit index (all in the Canonical
Form).
1402

o

Set the left working position quadruple to be
<left_edge_node, left_edge_position,
first_node, first_position=.

1410

—1400

left edge code unit index,

first code unit index,

last code unit index,

and right edge code unit index respectively.
If an index is -1, then its corresponding pair
is <null,0>.

1403

//'/Is the\\\
<,//Canonical Target™.
“.the empty string?.~~

Yes
1405 /

Set both the left working position and right working
position quadruples to

<left_edge_node, left_edge_position,
right_edge_node, right_edge_position>.

Set the right working position quadruple to be

<last_node, last_position,

right_edge_node, right_edge_position>.
1420

1425

Determine the type and
value of the left offset.
1430

Determine the type and
value of the right offset.
1435

Return the values and
types of the left and right
offsets.

1440

FIG. 14

|

U.S. Patent

Inputs: The node array, the range in the
node array, and the left working position
quadruple.

1505

-

Yes <

Y
The type of offset is VnT. For the negative offset
value calculate the number of VnT nodes
between the right_node and the left endpoint of
the range, including the left endpoint. Do not
count text nodes. If right_node is NULL then
start the count beginning with the rightmost
node of the node array.

1525

y

For the positive offset value calculate the
number of VnT nodes between the left_node
and the left endpoint of the range, including the
left endpoint. Do not count text nodes. If
left node is NULL then start the count beginning
with the leftmost node of the node array.
1530

May 31, 2016

—1500

e ’ Is the

1520

-

- Is the

Sheet 11 of 45

left endpoint of the ™.
range a VnT node? -~

US 9,356,574 B2

Let <left_node, left_offset, right_node, right_offset> be
» the left working position quadruple.
1510
\

. g

N
.

///

The type of offset is Text. For the negative offset
value calculate the number of code units between the
right_node, right_offset position and left endpoint
node and offset position of the range. (For each new
code unit encountered, increment the count by 1.) Do
not count VnT nodes. If right_node is NULL then
count beginning with the rightmost code unit of the
node array.

1535

v

For the positive offset value calculate the number of
code units between the left_node, left offset position
and the left endpoint node and offset position of the
range. (For each new code unit encountered,
increment the count by 1.) Do not count VnT nodes.
If left_node is NULL then count beginning with the
leftmost code unit of the node array.
1540

.
T T
~ N
- .

e

///Magnilude of the positive\\\
_"offset value less than or equal to the ™
\\\ magnitude of the negative offset //’

~.
-

Yes ~

value?

~._ 1545

Return the type and
positive offset value.
1550

FIG. 15

~
o

/ No

Return the type and
negative offset value.
1555

U.S. Patent May 31, 2016 Sheet 12 of 45 US 9,356,574 B2

Inputs: The node array, the range in the
node array, and the right working position
quadruple.

Let <left_node, left offset, right_node, right_offset> be
the right working position quadruple.

1605 1610
\
7 Is the S
Yes (\ right endpoint of the /} No

L “~_range a VnT node? L
o e o The type of offset is Text. For th tive offset
)) o 7 e type of offset is Text. For the negative offse

The type of offsetis VnT. For the negative \\//’ value calculate the number of code units between the

offset value calculate the number of VnT
nodes between the right_node and the right
endpoint node of the range, including the right
endpaint. Do not count text nodes. If
right_node is NULL then count beginning with

right_node, right_offset position and the right
endpoint node and offset position of the range. (For
each new code unit encountered, increment the
count by 1.) Do not count VnT nodes. If right_node is
the rightmost node in the array NULL then start the count beginning with the
' rightmost code unit of the node array.
1625 1635

| ;

For the positive offset value calculate the number of
code units between the left_node, left_offset position
and the right endpoint node and offset position of the
range. (For each new code unit encountered,
increment the count by 1.) Do not count VnT nodes.
If left_node is NULL then count beginning with the
leftmost code unit of the node array.

For the positive offset value calculate the
number of VnT nodes between the left_node
and the right endpoint node of the range,
including the right endpoint. Do not count text
nodes. If left_node is NULL count beginning
with the leftmost node in the node array.

1630

1640
/// Is the \\\\
" Magnitude of the positive ™.
< offset value less than the magnitude >
T~ of the negative offset value? "
Yes S 1645 7 No
Return the type and Return the type and
positive offset value. negative offset value.
1650 1655

FIG. 16

U.S. Patent May 31, 2016

Sheet 13 of 45

At the user agent: Construct

and send the search criteria

to the search engine. It then
waits for the reply.

1705

-7 Atthe search
engine: Is the search
engine configured to always

create Fragment

Hyperlinks?

..
.
S
~.
e
-
e
7

.

!

The search engine performs a
normal search based on the
search criteria received.
However, longer relevant
ranges may be associated
with snippets and a MagLink
Friendly Boolean is
associated with result URIs.
1710

wanr

-

No

Yes

)

At the search engine: Create an
Overall Fragment Hyperlink for
each document and a Fragment
Hyperlink for each content snippet
of the search results, and
incorporate them into the search
results.

1720

At the search engine: Send the search
results to the user agent that originated
the query.

1725

|

o .
-

.
~.

" Atthe user
-~ agent: Is it the user’s \\\
preference to have Fragment >
Hyperlinks in search ”
results?

-
e -
~. 1730 -

~e Yes
~.

7

<
e

-
~ -
~. o
-

.
.

ST

<

.

At the search™-_
~"engine: Do the search™.
criteria include a request
for Fragment
“._Hyperlinks? .~

e
7

L

<7Y934[

I
7 S

.

_~"" Atthe user .

//”/agent: Did the search ™._
engine include Fragment
“>~_Hyperlinks in the result

.

1735

Yes

NoO——— P

Done. At this point the user may

possibly selecting a Fragment

further interact with the page,

-
-

s?

=

US 9,356,574 B2

1700,
\

\
\

At the user agent: A search
is invoked by or on behalf of
a user.

1702

Yes

.

" Atthe user .
agent: Are the

< capabilities of the search >

- engine already
known?

\\\Lo?'////

%

7 .

~
.
.

No

v

The user agent requests and
receives the capabilities of the
search engine with respect to
embodiments. The response

includes whether the search
engine is configured to create
Fragment Hyperlinks in search
results. A response indicating
that it does not understand the
request, or no response at all,

indicates that it has no such

capability.
1704

::%Nof
v
At the user agent: Create an QOverall
Fragment Hyperlink for each
document and create Fragment
Hyperlinks using the content shippet
strings in the search results.
Incorporate the new hyperlinks into the
search results according to
configuration settings.
1740

Hyperlink tor activation.
1745

FIG. 17

U.S. Patent May 31, 2016

Input: Boolean, true if "full relevant content” Fragment
Hyperlinks are requested.
Input: Boolean, true if full-sentence Fragment Hyperlinks
are requested.
Input: Boolean, true if aggregated snippet ranges in
Fragment Identifiers are requested.
Input: Boolean, true if the user agent requested Fragment
Hyperlinks.
Input: A set of search results for display to a user, with
results for each specific document comprising:
1. The URI of the document.
2. The document’'s Common DOM Form.
3. The MagLink Friendly Boolean for the document.
4. The snippets Common DOM Form ranges (object based
in the Common DOM Form) that are to be displayed in
search results, each in association with the Common DOM
Form range of identified relevant (i.e., search identified as
relevant) content from which the snippet was taken.
5. ldentification of subsets of the snippets that are
associated rich snippets. This can be empty.

1805

For this document:
1. Generate an Overall Fragment URI and an asscciated
ordered set of snippet strings.

—1800

Sheet 14 of 45 US 9,356,574 B2

P Is there
-“an unprocessed document.
in the search results?

1810

A

Yes——
Return the
altered results.
Select an unprocessed search 1815

result document, subsequent
actions in this loop apply to it.
1820

!

Create the new URI prefix by remaoving any
Fragment Identifiers from the document URI.
1825

2. For each snippet (for this document) generate a
Fragment URI and an associated ordered set of snippet
strings.

1830

_~"Did the user agent .

_~TequestF

the document (for this loop) MagLink ™

ragment Hyperlinks, i$™__

Friendly, or is the search engine ///
\\\ponfigured to produce indirect/// Create a Safe-Mode Fragment
~~_Fragment Hyperlinks?_-~ Hyperlink for each generated URI. The
Cregte a Normal-Mode Fragment s S 1835 P A . href attribute is the URI prefix, the
Hyperlink for each generated URI. The Yes No_ maglink_href attribute is the generated
href attribute is the generated URI. The - “<al URI. The associated snippet strings
associated snippet strings become &~ become atiributes of the Fragment
attributes of the Fragment Hyperlink Hyperlink starting with
starting with “maglink_snippet1”, “maglink_shippet1*,
‘maglink_snippet2”, etc. : . . “maglink_snippet2”, etc.
1840 A small icon or logo style image is made 1845
| into the anchor image of the new Overall [—
Fragment Hyperlink, which is appended
» after the conventional hyperlink for the 1«
document in the search results
document.
1850
Using the new Fragment Hyperlink 7 -
gssomated with egch snippet, a SF“""” /// Did the user agent ~ ™._ Using the hew Fragment
|ct(r)1n or Ior?o _style Imf?gtﬁ |sFmade m:o __ request MagLinks to be separate >> Hyperlink associated with each
H e ?nE orhl_mhage ° ed rdag?t1enth . fromsnippettext? 7 snippet, the display text of the
yperiink, which Is appended atier ine o 1855 d associated snippet itself becomes
snippet that it is associated with in the __Yes™~ e T T No— the anchor text of the Fragment
results. . e - Hyperlink.
1g€0 1865

FIG. 18

U.S. Patent May 31,

2016 Sheet 15 of 45 US 9,356,574 B2

Begin parsing the search results web page
from the beginning of the page to identify

web page to identify additional
hyperlinks to search result

to the identified document.
1910

Continue parsing the search results

documents. Actions in this loop apply

hyperlinks to search result documents.

1905

—1900

v

N
7 N
// \\\
Has a Y

-
-

_~""document been identified ™.

~.

7 N
- ~

Have qualified

g

Continue parsing the page to identify a sequence of

No “_ inthe search results? Yes——® gnippets associated with the document. Any such
R 1915 /// identified sequence of snippets is qualified (by this
~ 7 parsing) to be associated with the document, potentially
S Done searchable in the target document, and as yet
————No—— 1920 unprocessed into Fragment Hyperlinks by these actions.
S 1917

snippets been identified 7
1925

e |

Create the new URI prefix by removing any
Fragment Identifiers from the document URI.

1930

Create a Normal-Mode Fragment
Hyperlink for each generated URI. The

href attribute is the generated URI. The

i

For this document:

associated ordered set of snippet strings.
2. For each snippet (for this document) generate a

shippet strings.
1935

1. Generate a version 2 Qverall Fragment URI and an

version 2 Fragment URI and an associated ordered set of

associated snippet strings become
attributes of the Fragment Hyperlink
starting with “maglink_snippet1”,
“maglink_snippet2”, etc.
1940

Using the new Overall Fragment
Hyperlink, a small icon or logo style

K, Using the new Fragment
Hyperlink associated with each
shippet, the display text of the

\ associated snippet itself becomes
the anchor text of the Fragment

Hyperlink.
1955

AN
N,
N

\,

~—

"No._

Using the new Fragment Hyperlink
associated with each snippet, a small icon or
logo style image is made into the anchor
image of the Fragment Hyperlink, which is
appended after the snippet that it is
associated with in the results.

1960

~—

e

image is made into the anchor image of
the Fragment Hyperlink, which is
appended after the conventional
/| hyperlink for the document in the search
results document.
1945

7 N
~ .

- Did the user agent
request MagLinks to be separate :

from snippet text? -
1950

~7 >
- .
=
///

~
.
.

FIG. 19

U.S. Patent May 31, 2016 Sheet 16 of 45 US 9,356,574 B2

Input: A set of one or more Unicode strings.

Input: A URI

Input: Boolean indicating whether this is being created by a user agent from a search result snippet or
shippets.

Input: Boolean indicating whether this is being created by a search engine for search results.

Input: Boolean indicating if images are to be interpreted as text nodes.

Input: Boolean indicating if images are never to be interpreted as text nodes.

2000—— 2005
7 lIsthere T
No 2 an unprocessed string? 4——————
If the URI for the present document has one or more Fragment \\\ ///
Identifiers of this embodiment, then remove them. The result is the |
URI prefix, calculate a hash of the prefix. Also create the time Yes
stamp for the resulting Fragment Identifier as the current UTC v
seconds since January 1, 1601. Pick the next unprocessed string in order,
2035 subsequent actions in this loop apply to it.
i 2015
Create a Fragment Identifier that sequentially encodes the
following elements as character sequences from a 64 character
non-URI-escaped alphabet: Create a Canonical Form for the input string. Some
two character string ‘#Z’, which starts every Fragment dentifier. code units, including whitespace, are removed
integer: version number identifying this fragment encoding entirely. All characters that have a lower case form are
integer: UTC seconds since January 1, 1601 converted ta lower case. All remaining code units are
bit array: hash bits of the URI prefix placed in sequence, which is the Canonical Form.
integer: count of strings Also calculate the left and right offsets, which are the
for each string: number of code units collapsed on the left and right in
Boolean: created by a search engine for search results creating the Canonical Form.
Boolean: created by a user agent from search results 2020
Boolean: images as text nodes
Boolean: images are never text nodes
integer: length of Canonical Form of string in code units
integer: Hashwidth, width of content hash in bits
bit array: the hash of the string in size HashWidth Calculate a hash over the canonical string.
integer: the length of segments in the partitioned string 2025
integer: the width, in bits, for hashes of each segment (m) -
bit array: the partitioned-hash of the string
bit array: hash of the previous fragment encoding
2040
Partition the Canonical Form of the string into a
sequence of segments of the same size. The last
segment may be smaller than the rest in order to
exaclly partition the string. This is the partitioned-
Append the new Fragment Identifier to the URI prefix to create string. Calculate the hash for each such segment of
the new Fragment URI. the partition. From each hash select the first (high
2045 order) m bits and concatenate them into a bit array,
preserving the order of the code units in the range.
This is the partitioned-hash of the string.
2030
Return the new Fragment URI.
2050

FIG. 20

U.S. Patent May 31, 2016 Sheet 17 of 45

US 9,356,574 B2

These are actions taken when a user selects Before taking any Othe.r ac“.on in activating a
(clicks on or otherwise selects) a hyperlink for URI, parse t.h.e URI tol|dent|fy any Fragment
- |dentifiers of this embodiment.
activation. — 2100 2205
2105 2200— —
v
Access the “volatile record” (if it exists) of the user’s selection of
b 4 this URI for activation, using the full URI for the lookup. Update
T T the local navigation history and the navigation history at the
7 T URI Service for the user’s role. Store the new navigation history
" Does the hyperlink ™~ Activation Record identifier with this display context (HTML
—~have a verifiable Fragment URI of this™-. “window” object). Then delete the volatile record.
~~__ embodiment in either the hrefora 2208
“~.__maglink_href attribute? o

~._ 2110

No Yes— //// Were \\\\
Yes f " Fragment Identifiers of ~._
" _this embodiment located?
Set the value of the Set the value of the \’:\ Is this a Surrogate URI? /\) el
verified Fragment URI href attribute of the . 2215 7 l
of this embodiment as hyperlink as the URI T e No
the URI of the hyperlink. of the hyperlink. e
2130 2125 : ; =
While preserving the order of Fragment Identifiers and
ranges within Fragment Identifiers, parse for validity
and expand all multi-range Fragment Identifiers into a
sequence of single-range Fragment Identifiers. Store
\ 4 the sequence of validated (and possibly expanded)
Fragment Identifiers in memory associated with the
Create a volatile (not persisted) record of the window in which the page will be displayed, but which
user’s selection of the URI for activation. This is inaccessible to scripts or other code associated with
record is an association between the to-be- Yes the content of the document.
activated URI and 2220
1. the full URI of the current document, including
any Fragment Identifiers. ¢
2. any shippet or shippets associated with the o
hyperlink being activated (this occurs if the Remove the located Fra.gme'.“ Iqennflers No
current document is a search engine results from the URI for this activation.
2223
document).
This record is stored in temporary (volatile or l
not-persisted) memory for later lookup from Register for HTTP 302 and
the display context (HTML “window” object) 303 URI redirect notifications
where the URI is being activated. for this activation context. Add y
2135 to the HTTP request an HTTP
custom header to notify the Register for DOM user
Redirect Service of the input event notifications
embodiment version number. | | for selection changes.
2217 2225
N A
Done. l.e. activate i
the URI of the
hyperlink.
2140

Register for DOM change event
notifications, including changes to
textual content.

2230
FIG. 21 v

Done. l.e., continue to activate the
= possibly modified URI.
2235

FIG. 22

U.S. Patent May 31, 2016

T S 2300

~~" Does this document ™<{

" declare MagLink Friendliness, ™._
and is the document not yet marked

r “.._with user agent conformance? -~

— .
P

-

Sheet 18 of 45 US 9,356,574 B2

;/// Is the document \\\\
-~ DOM marked to indicate that ™~
“_the user agent conforms to this///T

~o. -

~ - ~._ specification? -
Yjs e 2302 - e 208 No
Mark the document e S -
DOM indicating that (Set the Boolean s - L
the user agent variable <Unregister> | ¢ _~ Isitpositively .
conforms to this No to true. _~~ known that this document ™.
specification. i 2306 \\\ does not declare MagLink/,/\T
2303 > Friendliness? -~ No
— P Yes S 2807 i
////’ \\\\\\ No \\\\ P /
it arts Set the Boolean
\\\emb(l)dimgnt gssociated/// / \\\ varlablfojgll;r:glstew
~~. with this window? .~ 7 . “ 2309
. 2304 " Are the title and ™~ ==
~ __~“description known, |.e., either~-_
> available or known to not -~
Yes S~ exist? 7
/y\\ \\3\3—0?/// No Done.
/,// \\\ T 2310
7 Is the \\\ Yes
" timestamp for earliest . P
r\\unprocessed DOM change/// // \\\
No ™ set? - - e
¢ S~ 2315 7 . Does the e Update the navigation
~_ _~"navigation history Content ™.))
B o . history for title and
Set the earliest _>—No» description.

unprocessed DOM
change timestamp to

A <if: Record for this document
l S match the tite and -~

description? 7 2312

-

now. Yes DNk R
2320 T
Yes TN
Set or reset timestamp for - - Is the Boolean\\\
» last DOM change to now. < i P
2325 ¢ ~._<Unregister> true? -
- e N o813 7
/// Is the Fragment \\\ T
< Identifier timer setto firein _>—Yes Yes
"~ half a second or less? -~ y ‘
T 2330 7 PN
No T~ e Unregister for DOM
/ change notifications for
e Has more this activation context
-~ than apredetermined " (window).
time interval elapsed since the > 2314

Set or reset the Fragment
|dentifier timer to fire at one
half second from now.
2340

No

|

r

“._earliest unprocessed DOM_~~
change? 7
.. 23385 7

No

Done.

2345

FIG. 23

U.S. Patent

N

2400

N
//-\re FragmeM

Identifiers of the
mbodiment associated with
this window?

N
T

No

v

Yes

This should not happen,
but if it does, then
unregister for selection
change notifications.
Done.

2410

Yes

No

\ previous selection made by us,
™~

"

// Is the \
_~"timestamp for earliest usk
input selection already

set?
\\m -

No

// Is there a \

-~ selection active on the
document, is it different from any

and was it made by
o user input? e
\ 2420 -~ ’
\ /
T

Yes

v

Set the timestamp for user
input based selection
change to now.
2425

v

Done
2430

FIG. 24A

May 31, 2016

S

e

Sheet 19 of 45

- 2450

/ i
- Is this a

302 or 303 redirect with a

/ custom HTTP header called

\\X Mag-Link-Fragments™?

. 2455 _

*/

No
A 4

Do nothing; i.e. allow the
redirection to proceed
without modification.

2460

A
/ Does the \

custom header contain a\
_ Conventional Fragment

\ Idezrl:gi:r’? ///
\— /
S~
Yes
\ 4
Parse the redirect URI and
excise from it the
Conventional Fragment
Identifier.
2470

v
Append the Fragment
Identifier of this
embodiment to the
redirect URI.
2475

A 4

US 9,356,574 B2

-

Unregister for redirect notifications
for this document.
2480

v

Done, allow the URI redirect to
proceed with the possibly
modified URI.

2485

FIG. 24B

U.S. Patent May 31, 2016

2500

Sheet 20 of 45 US 9,356,574 B2

This process begins when the Save the current

" Has the user made
" interactive selection changes for this ™.

Fragment IF:Ientifier timer fires —® document ready state. 4><\\ document and is selection the user's
for a particular document. 2508 \\\Eragment D preference'z///
//,~\\ T
/,// \\\ . No
" Hasitbeen - A
No _—~"more than half a second since™._ 7 o
. lastprocessing ofthe -~ -~ Has there previously ™.
f \\E\ragment Idenlifiers/?//ﬁ\No //’ been successful processing of the \\\
S 2517 .~ Fragment Identifiers, and have the DOM and ™
Set the Fragment Identifier timer o~ . selection, if selection is the user's Fragment Yes
for this document to fire one half “~.__|D preference, been stable since the//
second after the time stamp for vy . last successful processing?
o f es ~ ~
Fragment Identifier processing. S 2515 o
2520 L \‘\\ ///
Refrieve the Fragment Identifiers for \<\Yes e
this document and process them A Y
against the document DOM. Set the " Was the ready
R time stamp for Fragment Identifier Noﬁ{:\ State of the document :/>
TN processing to now. S~ ‘complete’? -7
7 Havethe 7 ~. 7
" DOM, and selection if "~ ¥ Hasthere o
_~"selection is the user's Fragment ID\\\ 7 previously been successful ™
preference, been stable for more than > _~processing of the Fragment Identifiers, ™.
“._the configured stability period for X _~"and have the DOM and selection, if selection ™~ &S
. unsuccessful processing? Ny “~.._ is the user’'s Fragment ID preference, been -~
Y 2530 <& 7 . . stable for more than the configured .~
. ~T"No_ -~ Wasthe processing .. "~ fime since the last successful .~
l e < successful for all Fragment > "~ processing? Yes\A
No e Identifiers? e S -
Yes P . 2825 7 ~ AT
}/’/Has the overall\\\ S Yes ~ Nvo
- time limit expired for this \\ ‘ ///’ \\\\
document or was the ready > ////Has the overall\\\\
ves \\s\tate ‘((;I)tmhefej?e(’:}:meii// Set or reset the time stamp for «<__time limit expired for this >~
X S 25935 c successful processing to now. R document? o
i 2550 ~~.2560 ves
No No
v 4 v

Set the Fragment Identifier timer for this document to fire
at the earliest time when the page can have been stable
for more than the configured time for failure stability, or
when the overall time limit will have expired, but ho
sooner than one half second after the last Fragment
Identifier processing.

2340

Set the Fragment Identifier timer for this document
to fire at the earliest time when the page can have
been stable for more than the configured time for
success stability, or when the overall time limit will
have passed, but no sooner than one half second
after the last Fragment Identifier processing.

If this activation was

Start the recovery part of a Fragment

process for the full
set of Fragment
Identifiers for this
document.

2343

Identifier recovery,
then provide recovery
feedback to the URI
Service.

2548

Update the distributed navigation history for
this user’s role. If the URI Service is a
search engine, then update it with document
content and whether this is a missing
indexed information event.

2568

document.
2570

FIG. 25

Unregister for event
notifications for this

U.S. Patent May 31, 2016 Sheet 21 of 45 US 9,356,574 B2

Input: An ordered set of one or more
Fragment Identifiers, a document with
its DOM, and the user's Fragment

Identifier display preferences. \\\\2600
2605
> /I/s ther(;\\\ 4 T Process the accumulated ordered set
7 an unbrocessed - 7 T of DOM ranges into the DOM in
< p ” “>—No—»<_ Were ranges produced? >~——Yes—»{ accordance with the capabilities of the
~._ Fragment Identifier? - ~ -
e e e 2673 - user agent and user preferences.
. 2610 - ~ T
= ~ 2675
s T
[No L
Yes
Return failure. Return the set of Fragment
2680 Identifiers with their match status
Select the first as yet as well as the scroll positions of
unprocessed Fragment the display elements.
|dentifier. Subsequent actions 2678
in this loop apply to it.
2615 o .
/’//// \\\\\\ ////// \\\\\
//// o S ///// \\\\\
< Is the version number 17 ~>——No—<__ s the version number 27 >—Nop
Parse the start of the Fragment N 2615 7 T 2635 o
Identifier to obtain the version g e ~o r
number. N ~
2620 | [
Yes Yes
v v

Decode the Fragment Identifier in
accordance with the encoding
used for version 1 Fragment

Decode the Fragment Identifier in
accordance with the encoding
used for version 2 Fragment

|dentifiers. |dentifiers.
2620 2640
. B
o g Process the Process the 7 g
A NN decoded version 1 decoded version 2 P, L
< Did the decoding “>—Yesw Fragment Identifier Fragment Identifier «Yes< Did the decoding =S
~ succeed? ~ . . ~ succeed? -
Y 2625 e against the DOM. against the DOM. e 2645 e
T~ == 7 2630 2650 S~/ 7
-~ S~
No——»
+—No A A

Add the range or ranges produced, if any, to the
accumulated set of DOM ranges in order. Mark the
Fragment Identifier as processed and according to

the quality of the match or matches found.
2670

FIG. 26

U.S. Patent May 31, 2016

Input: Version 1 Fragment Identifier
Input: DOM instance
2705 —— 2700

v

Sheet 22 of 45

Create a node array and Canonical Form for the document text
conditioned on the Boolean from the range that indicates if
image text is included in the range representation. Some code
units are removed entirely, including all whitespace. All
characters that have a lower case form are converted to lower
case. All remaining code units are placed in sequence, which is
the Canonical Form. Every code unit in the canonical sequence
is mapped to its text node in the node array and its position in
that node of the node array.

2710

Input: Version 2 Fragment Identifier
Input: DOM instance
2800 —— 2805

!

Create one or two node arrays and matching Canonical
Forms for the document text conditioned on the two
Booleans that govern image interpretation as text. Some
code units are removed entirely, including all whitespace. All
characters that have a lower case form are converted to
lower case. All remaining code units are placed in sequence,
which is the Canonical Form. Every code unitin the
canonical sequence is mapped to its text node in the node
array and its position in that node. Start with an empty
ordered set of DOM ranges.

2810

l

v

Find (if passible) a range in the DOM based on the 18 elements
from this version 1 Fragment Identifier range as follows:
Boolean: images with non-trivial ‘alt’ attributes as text nodes
Boolean: prefix closer to front
Boolean: suffix closer to front
Boolean: target closer to front
Boolean: Left offset is in VnT nodes (not code units)
Boolean: Right offset is in VnT nodes (not code units)
integer: HashWidth, width of content hashes in bits
integer: length of prefix in code units
integer: length of suffix in code units
integer: length of target (selection) in code units
integer: left offset
integer: right offset
bit array: hash of prefix of size HashWidth
bit array: hash of suffix in size HashWidth
bit array: hash of target in size HashWidth.
integer: the length of segments in the partitioned range
integer: the width, in bits, for hashes of each segment
bit array: the partitioned-hash of the range
2715

For each Canonical Form constructed (one or two of them),
find (if possible) a range or set of ranges in the DOM based on
the 11 elements from this version 2 Fragment Identifier range
as follows:
Boolean: created by a search engine for search results
Boolean: created by a user agent from search results
Boolean: images with non-trivial ‘alt’ attributes as text
Boolean: images are never text nodes
integer: length of Canonical Form of string in code units
integer: HashWidth, width of content hashes in bits
bit array: the hash of the string in size HashWidth
integer: the length of segments in the partitioned string
integer: the width, in bits, for hashes of each segment (m)
bit array: the partitioned-hash of the string
2815

If ranges were produced from two Cananical Forms, then the
match quality from each is compared and the ranges having
the best quality match are retained. If there is a tie in quality,
then the results from the Canonical Form that did not use
image text are retained.
2820

v

Return the range produced, if
any, and report the quality of the
match.

2720

FIG. 27

Y

Return the ranges produced, if
any, and report the quality of the
matches.

2825

FIG. 28

US 9,356,574 B2

U.S. Patent May 31, 2016 Sheet 23 of 45 US 9,356,574 B2

Input: An ordered set of ranges for a
DOM.
Input: DOM instance
Input: The user's Fragment Identifier |——_
. 2900
display preferences.

2905
// Does ™
the user prefer ™.
. >——Yes
. selections? -
2010
\ /
T // S
No Are there ™
<_multiple ranges? No
L S 2020
. /
Modify the DOM so that \(/
the text in each range is
highlighted. Yes Create a single-range
2915)\ selection for the DOM,
) “~ and display it.
2955
// Is the \\
user agent (e.g. browser) ¢
~._able to display multi-range)
. selections? No Scroll the display
2095 to the range in the
Yes \\v/ selection.
2960
Create a single-range selection
Create a multi-range against the DOM for the first
selection against the range in the ordered set of
DOM from the array ranges, and display it.
ranges, and display it. 2940
2930 ¢
Scroll the display
to the range in the
selection.
Scroll the display to the 2045
first range in the ordered
set of ranges.
2935 v
Modify the DOM so that all

text in each of the ranges is
highlighted.
2950

Return the precise scroll
positions of the display. ¢—————
2965

FIG. 29

U.S. Patent May 31, 2016

Sheet 24 of 45 US 9,356,574 B2

Perform 3 n-gram hash searches across the entire Canonical Form,
for the prefix hash, the suffix hash, and the target hash and where n

is the length of the prefix, the suffix , and the target in UTF-16
(Unicode) 16-bit code units (as opposed to characters which may
be longer than 16 bits) respectively. Construct an array for each
search that holds the positions, in the Canonical Form, of the
matches. Matches occur where the high order HashWidth of bits of
the prefix, suffix, and target hashes respectively are the same.
3005

}

Using the three arrays of match positions and lengths of the
matches, identify the target string positions of any perfect matches.
If there is a prefix match followed by a target match, which is then
followed by a suffix maich (without gaps) in the Canonical Form,

then that is a perfect match..
3010

——3000

7 s there .
< at least one perfect
. Mmatch?

3015 7

e

o

Yes
v

Score each perfect match according to the
three “closer to front” Boolean values. Each

-
-
7
- .

P Isthe ™

~.
L
N ~

- g P target longer than a
Is there ™

%

e

-
-

.

is worth one point if the perfect match also
meets the criteria of the Boolean. l.e, the
corresponding match is either closer to the
front or to the end, according to the value of
the Boolean. The highest score wins. If there

are more than one with the high score,
N choose the first of such perfect matches
- “_configurable minimum e T 3020
< atleastonetarget > . length? " Isthereat .
\\ match? // N\ "~._3030 //‘-No 7 least one target \\\
\\\M e N\ T ~<__ match between a prefixand > Yes
T Ves lilo O~ suffixmatch? l
No N T e 328~
h 4 \\ /i/ \\\ \\\ /,/ g Score each "between" target match on
Use the secondary " Aretheretarget the basis of the closeness of such
search elements to find .~ matches that follow a prefix
target matches. A
3050

- match or precede a suffix
A match?

3035
" Isthere \\\\ f\// Is there \‘\/
<__asecondary target > | @ target match?//l
S match?) RN SV
. 3060 1 No i
\\V/’/ ; -
No J

Amongst the target matches, pick the
Report failure in the

search for a matching
DOM range.
3065

Yes

first one if the Boolean “target closer to
front” is true, otherwise pick the last
one. This is NOT a perfect match.

3075

I

The result is a pair of Booleans indicating if it is an exact match and
whether secondary criteria were used. There is also a possibly

incomplete set of three value pairs of <position, length>, with the first
for the prefix, the second for the target, and the third for the suffix.

surrounding matches. Pick the target
match that is closest in aggregate to the
end of the prefix match and the
beginning of the suffix match. If there is a —b|
\ tie then score the ties according to the

Y\ "closer to front" Booleans as for perfect
e\s matches. If there is still more than one
\ remaining then pick the first one.
N 3045
A\
N
«

Choose the target match that is nearest
the preceding prefix match or the
following suffix match. If there is more
than one with the same proximity, then
score the remaining matches on the
basis of the Boolean "target is closer to
front" as follows. If the Boolean is true,
then pick the first of the remaining
matches, otherwise pick the last one.
This is not a perfect match.

This Canonical Form match is further processed into a DOM range .
3085

v

3080

FIG. 30

Report this DOM range along with two

Booleans indicating whether it came

from a perfect match and whether the

secondary search elements were used
3090

U.S. Patent May 31, 2016

Input: Decoded Fragment Identifier having one range.

Input: Canonical Form of a document.
3103

v

Perform one n-gram hash search across the entire Canonical

Form, where n is the length of segments in the partitioned range.
Create in this search an array of match positions for each
segment, in order, having this same length. Matches occur where
the high order bits match. The number of high order bits in the
comparison is an integer in the fragment range encoding. If the
last segment has a different length, then perform an additional n-
gram hash search, across the entire Canonical Form, for that last
segment, creating an array of match pasitions.
3105

v

Construct from each resulting array and the Canonical Form a set
of unique strings that the hash matches. If no string in the
Canonical Form was matched for a particular segment, then the
string set is populated with a single string, having the same length

as the segment, using a repeated code unit that appears nowhere

in the Canonical Form.
3110

-3100

Sheet 25 of 45

US 9,356,574 B2

v

Construct a regular expression from each set that recognizes

precisely each string in the set, without repetition. Thus, for a set

{"abc”, “def’}, the regular expression is (abc|def).
3115

v

Form the approximate search regular expression by concatenating
the regular expressions in the same segment order from the range

of the Fragment Identifier.
3120

v

In the Canonical Form, find the minimum edit distance

(Levenshtein distance) approximate match for the regular

expression. If there is more than one with the same minimum
choose the first one.

, then

3125

e

FIG.

31

—

\\pioportion of the

S~
~

~
~

-
7

= Does the match
require less than a configurable
Cananical Target Ieng/tr;//
in edits? ////
3130 7
No
v
Perform a direct n-gram based search for
partially matching content. This matching
process is performed using the two
dimensional array of n-gram hashes.
3135

—

~
~.
~—

Yes

.
- .

__~"Was a direct n-gram >
\\\based match found?//
Yes

3140 -
Report back the match position and

its length in the Canonical Form.
3145

S

o
.

~.

Report back a failure to match.
3150

U.S. Patent May 31, 2016

Start with an array of UTF-18 16-bit code units (the input
string) to be searched (which is typically a Canonical
Form of a document), the positive integer value of n, the
value array <DistHash> of the rolling hash function h

Sheet 26 of 45

A 3200

Let <idx> be an integer index

over UTF-16 code unit sequences of length n, the
number of elements <DistHashCount> in the array, and
the number <bitCount> of high arder bits used in each
hash.
3205

!

Let <bitMask> be a bit-mask that retains only the high
order <bitCount> bits of a hash value via a bitwise and
operation. Let <countMatches> (the count of hash
matches found) be an array of size <DistHashCount>,
and set every value of it initially to 0. Let <arrayMatches>
be an array of size <DistHashCount>, each element of
which is in turn an initially empty array of indexes into the
input string. The array elements indicate where the hash
matches are in the input string, for each element of the
<DistHash> array.

3210

Let the first n code units of the input string be the current
n-gram. Calculate h over the current n-gram and let
<curNgHash> represent the value of the current n-gram
hash.

Let <indexNGram> represent the index of the first code
unit of the current n-gram in the input string; initially it is
zero.

3215

z

initialized to zero.

US 9,356,574 B2

3220

v

Let <cdh> be an integer whose standard binary representation
is obtained by the bitwise exclusive or (XOR) of <DistHash> at
index idx and <curNgHash>, masked with <bitMask>.

In other words:
<cdh> = (<DistHash>[idx] XOR <curNgHash>) AND <bitMask>
3225

Yes

Set
<arrayMatches>[<idx]|[<countMatches>[<idx>]]
to the value of <indexNGram>. Increment No
<countMatches>[<idx>].
3235

h 4
Increment <idx>.
3240

" Is <idx> less than \\\
“._<DistHashCount>? .~
. 3245

s T

" there more

z
C

Return the two dimensional array
<arrayMatches> and its lengths in the
<countMatches> array.

3265

FIG. 32

<" text after the current n-
T gram? -
w3250
S

Yes

v
Advance the rolling hash function h by a 16 bit
Unicode code unit, obtaining <curNgHash> for
the next n-gram. Increment <indexNGram>.
3255

U.S. Patent May 31, 2016

Input: <arrayMatches>, a two dimensional array of n-
gram hash matches. Each entry gives the
position of a hash match in the Canonical Form.

Input: <DistHashCount>, the count of hashes (same as
count of segments) whose matches are
represented in the array.

Input: <length>, the total length of the Canonical Target
in code units.

Input: <n>, the nominal size of the n-grams in code

units. The last one may be shorter and its length

is calculated from <length> and <n>, its size is
<n-last>.

Input: <hashBits>, the number of bits used from each

hash.

3305

v

Let <ThresholdProbability> be the
configured probability required to infer an
isolated partial match.

3310

y
Calculate <minSeg> as the required
number of segments to match in order
and without gaps to meet or exceed
<ThresholdProbability>.

3315

4

3300

From the array of matches, find all contiguous matches
(without gaps or overlaps and in segment hash order)
that are <minSeg> in length or longer. Each match of a
segment is part of a maximal contiguous match that
contains it, and most random maximal contiguous
matches will be of length 1. The qualified maximal
contiguous matches are of length <minSeg> or longer.

3320

y

Initialize the set of expanded matches to be the set of
qualified maximal contiguous matches.

3325
Return failure to s the set of ™_
find a match. <_expanded matches >
3335 N

33

Sheet 27 of 45

US 9,356,574 B2

For each expanded match, create a set of trial
expansions of it in both directions by the following
rule. If a subsequent (resp. previous) match (of any
length in segments, including other expanded
matches) is in proper order, i.e. it is in segment
hash order and it follows the rightmost segment
match (resp. precedes the leftmost segment match),
then it becomes a trial expansion of the expanded
match. Each trial expanded match is associated
with its match ratio, which is the size of the gap
between them divided by the total length of the
hash matches within the resulting trial expansion in
code units. The size of the gap used is not less than
half the sum of the lengths, in code units, of any
segments that are not matched (i.e. missing)
between the expanded match and the match itis
joined with in the trial expansion.

3340

—»

In the expanded match set, replace each expanded
match with the trial expansion for it (if there are any)
that has the lowest match ratio, provided the lowest
match ratio is less than a configured maximum.
3345

Yes

e .

- .
_~"Were any changes ™.
< made to the expanded >
~.. matchset? -~

. -

No

Any overlapping expanded matches from
the expanded match set are combined
into a single expanded match.
3335

|

The expanded match that matches the

largest number of segments is reported

back as the match. If there is more than
one having the largest number of

. empty?

segments matching in it, then the shortest
of them is reported. If there are still more
than one, then the first in the Canonical
Form is reported as a match.
3360

FIG. 33

U.S. Patent

No

Report failure in the
search for a matching
DOM range.
3430

May 31, 2016 Sheet 28 of 45 US 9,356,574 B2

Perform one n-gram hash search across the Canonical Form, for the
target hash and where n is the length of the targetin UTF-16
(Unicode) 16-bit code units. Construct an array that holds the

positions, in the Canonical Form, of the matches. Matches occur
where the high order HashWidth of bits of target hashes are the
same.
3405

——3400

Is there
at least one match?

3410 Yes

Is the target length
equal to or greater than a
configured minimum?
3415

Up to a configurable limit retain the (exact)
matches in order of appearance in the Canonical
Form, starting with the first.

3435

Yes

v

Use the secondary
search elements to find
target matches.
3420

The result is a pair of Booleans indicating if it is
an exact match and whether secondary criteria
were used. This match or matches are further
processed into a set of DOM ranges.
3440

Is there
a secondary target
match?
3425

Yes—p

Report this set of DOM ranges, each
associated with two Booleans
indicating whether it came from an
exact match and whether the
secondary search elements were used.
3445

FIG. 34

U.S. Patent

May 31, 2016

Input: a DOM instance for a document.

Input: a node array for the DOM instance mapped by the

Sheet 29 of 45

N
A

US 9,356,574 B2

suffix. 3510~

Canonical Form. — 3500 -
Input: A Canonical Form, possibly an Alternative Canonical 5 / Is the

Form. <. match exact? /) Yes

Input: A set of three possible matches and their lengths; one f 3515

each for the prefix, target, and suffix. The prefix and suffix may){es . 7

be missing (which is always the case for version 2 Fragment //*\\ h N
Identifiers). P T No s the ™
Input: Boolean: indicating whether the match is exact. e Is there S " targetthe ™
Input: Boolean: set to true if there is a target, suffix, and prefix \\a prefn_(, target, and//> <\\empty string’?/:
match and the target match is unique between the prefix and ~-suffix match? - \\\M//

Input: Left and Right offset types and values.
3505

No ////Is the target match ™~._

" unique between the leftand ~._

Let the left final position pair <FL_Node,
FL_Position> be the node and position of

the first code unit in the Canonical Form
target match. Let the right final position pair
<FR_Node, FR_Position> be the node and
position of the code unit of the node array
mapped by the last code unit in the
Canonical Form target match.
3530

v

Then create a DOM range using the left
and right final position pairs of the node
array. (This change is for HTML DOM
instances, and is not done at all for the
Common DOM Form and may involve
different rules for other DOM models.)

If <FL_Node> is a text node (not an Alt
node interpreted as a Text node), then
<FL_Node, FL_Position> is the left
boundary of the range in the DOM. If
<FL_Node> is not a text node (l.e. is either
a VnT node or Alt node), then the parent
node (in the DOM) of <FL_Node> is the
node of the left boundary and the left
boundary offset is the position of
<FL_Node> as a child of its parent.

If <FR_Node> is a text node (not an Alt
node interpreted as a Text node), then
<FR_Node, FR_Position + 1> is the right
boundary of the range in the DOM. If
<FR_Node> is not a text nade (l.e. is either
a VnT node or Alt node), then the parent
node (in the DOM) of <FR_Node> is the
node of the right boundary and the right
boundary offset is the position of
<FL_Node> as a child of its parent plus 1.

If the left boundary of the DOM range is
subsequent to the right boundary of the
range, then set the left boundary to the
same as the right boundary.
3565

the code unit of the node array mapped by <—N0H(\/ the target match \>

<::\ right prefixes and at least a configurable \//\

PN No’\%\ number of code units T Yes
7 AW I inlength?
’ s .. 3525
S empty? 7
-
T es No
Yes
A 4
Report failure to create a Let the left working position
DOM range. quadruple be <LL_Node,
3529 LL_Position, LR_Node,

v

Let the left working position quadruple be
<LL Node, LL Position, LR_Node,
LR_Position>;
where <LL_Node, LL_Position> (resp.
<LR_Node, LR_Position> is set to the node
and code unit position mapped by the last
(resp. first) code unit in the canonical prefix
(resp. target). If the canonical prefix is empty
(O-length), then <LL_Node> is null and
<LL_Position> is 0.

3545

v

Let the right warking position quadruple be
<RL_Nade, RL_Paosition, RR_Node,
RR_Position>;
where <RL_Node, RL_Position> (resp.
<RR_Node, RR_Position> is set to the node
and code unit position mapped by the last
(resp. first) code unit in the canonical target
(resp. suffix). If the canonical suffix is empty (0-
length), then <RR_Node> is null and
<RR_Position> is 0.

3530

LR_Position>; where <LL_Node,
LL_Position> (resp. <LR_Node,
LR_Position>) is set to the node
and code unit position mapped by
the last (resp. first) code unit in the
canonical prefix (resp. suffix). If the
canonical prefix (resp. suffix) is
empty (O-length), then <LL_Node>
(resp. <LR_Node>) is null and
<LL_Position> (resp.
<LR_Position>) is 0 (which
indicates an imaginary code unit
and node immediately before
(resp. after) any content of the
node array).

3535

v

Let the right working position

quadruple be <RL_Node,

RL_Position, RR_Node,

RR_Position>, and let its values

be identical to those of the left

warking position quadruple.
3540

Yy

If <FR_Node, FR_Position> is

Transform the left

Transform the right
working position
quadruple into the
right final position
pair <FR_Node,
FR_Position> in the

to the left of <FL_Node,
FL_Position> in the node array,
then let <FL_Node,
FL_Position> be the object to
the immediate right of

P m—

—|

FIG. 35

<FR_Node, FR_Position> in
the node array.
3563

mapped node array.
3560

working position
quadruple into the
left final position
<4 pair <FL_Node,
FL_Position> in the
mapped node
array.
3555

U.S. Patent

May 31, 2016

Input: a node array.
Input: Working position quadruple

Input: left offset type and value

<L_Node, L_Position, R_Node, R_Position>.

3602
/ No Is ‘Text the
: . left offset type?
3600 v . ol
T - P
s the left~._ S
offset value ™ o
positive?
No w3610 Yes

Adjust <R_node, R_position>
to the left according to a
negative left offset value in
non-text visual nodes. Return
the result.

3615

Adjust <L_Node, L_Position> to
the right according to a positive
left offset value in non-text
visual nodes. Return the resuit.
3620

) i\(esj

Sheet 30 of 45

.

US 9,356,574 B2

s the left~_
-~ offsetvalue -

Adjust <R_node,
R_position> to the left
according to a negative
left offset value in code
units. Return the result.
3630

positive?
\ 3625

Adjust <L_Node,
L_Position> to the right
according to a positive
left offset value in code
units. Return the result.

3635

FIG. 36

Input: a node array.
Input; Working position quadruple

Input: right offset type and value
3702

<L_Node, L Position, R_Node, R_Position>.

/
/

/
3700

o “Is the right\\\

—No <

SNy ~. yd

A ls “Text the
left offset type?
3705

. e
7

< offset positive? >
. 310

No e

Adjust <R_node, R_position>
to the left according to a
negative right offset value in
non-text visual nodes. Return
the result.

3715

Yes

o

Adjust <L_Node, L_Position>
to the right according to a
positive right offset value in
non-text visual nodes. Return
the result.

3720

FIG. 37

—

7 “Is the righ\t\\

—< offset positive? \>—‘

No

v
Adjust <R _node,
R_position> to the left
according to a negative
right offset value in code
units. Return the result.
3730

N 3725

e Yes

Adjust <L_Node,
L_Position> to the right
according to a positive

right offset value in code
units. Return the result.
3735

U.S. Patent

May 31, 2016

Let <current_node, current_position> be the left
pair that is to be adjusted. Let
<traversal_counter> equal the left offset value. Let
<next_node> be the node to the left of
<current_node> in the node array (if there is none
to the left it is null). Let <exit_loop> be false.
3805

!

Set <exit_loop> to true if:
1. <traversal_counter> is zero or
more,
—» 2. <next_node> is null, or
3. <next_node> contains text mapped
by the Canonical Form.
3810

3800

// \\

- ~
. . oo~
< I8 <exit_oop>true? >

S 3815~

No

Set <current_node> to the value of
<next_node>, increment the
<traversal_counter=> if <next_node=> is
not a Text node or Alt node
interpreted as a Text node, and set
<next_node> to the node to the left of
the new <current_node> in the node
array. Yes
3820

Set <current_position> to 0 and then
return <current_node, current_position=.
3825

FIG. 38

Sheet 31 of 45

US 9,356,574 B2

3900 —

Let <current_node, current_position> be the left pair
that is to be adjusted. Let <traversal_counter=> equal
the left offset value. Let <next_node> be the node to
the right of <current_node> in the node array (if there
is none to the right it is null). Let <exit_loop> be
false.
3905

i

Set <exit_loop> to true if:
1. <traversal_counter> is zero or less,
2. <next_node> is null, or
3. <current_node> contains text
mapped by the Canonical Form.
3910

//// . \\\
<_ s <exit_loop> true? >
IS 3915 7

~. — e

~.

No

Set <current_node> to the value of
<next_node=>, decrement the
<traversal_counter> if <next_node> is
not a Text node or Alt node
—— interpreted as a Text node, and set
<next_node> to the node to the right
of the new <current_node> in the Yes

node array.
3920

Set <current_position> to 0 and return
<current_node, current_position>.
3925

FIG. 39

U.S. Patent

May 31, 2016

Let <current_node, current_position> be the left
pair that is to be adjusted. Let
<iraversal_counter> equal the left offset value. Let
<next_node, next_position> be the next code unit
position to the left of <current_node,
current_position> in the node array (if there is
none to the left then <next_node> is null and
<next_position> is 0). Let <exit_loop> be false.
4005

y
Set <exit_loop> to true if:

1. <traversal_counter> is zero or more, the

code unit at <current_node,

current_position> is not the second code

unit of a two-code-unit character, and not

both of <current_node, current position>

and <next node, next position> are

whitespace,

2. <next_node> is null, or

3. <next_node, next_paosition> is mapped

by a code unit of the Canonical Form.

4010

<(_ Is <exit_loop> true? >
4015

.
~— e

T
No
v

1. Increment the <traversal_counter> if
not both of <current_node,
current_position> and <next_node,
next_position> are whitespace,
2. set <current_node, current_position>
to the value of <next_node,
next_position>, and
3. set <next node, next position> to
the next code unit position to the left of
<current_node, current_position> in the
node array (if there is none to the left
then set next_node to null and
next_position to 0)

4020

¥

Return <current_node, current_position=>.
4025

FIG. 40

4000

Sheet

400~

32 of 45

Let <current_node, current_position> be the left
pair that is to be adjusted. Let
<traversal_counter> equal the left offset value. Let
<next_node, next position> be the next code unit
position to the right of <current node,
current_position> in the node array (if there is
none to the right then <next_node> is null and
<next_position> is 0). Let <exit loop> be false.
4105

v

Set <exit_loop> to true if:

1. <traversal_counter> is zero or less and the
code unit at <current_node, current_position>
is not the second code unit of a two-code-unit
—® character,
2. <current_node> is null, or
3. <current_node, current_position> is mapped
by the Canonical Form.

41110

\

< Is <exit_loop> true?
S~ M5

No

1. Decrement the <traversal_counter> if
not both of <current_node,
current_position> and <next_node,
next_position> are whitespace,
2. set <current_node, current_position>
to the value of <next_nhode,
next_position>, and
3. set <next _node, next position> to
the next code unit position to the right of
<current_node, current_position> in the
node array (if there is none to the right
then set next_node to null and
next_position to Q)

4120

,

Return <current_node, current_position>.
4125

FIG. 41

US 9,356,574 B2

U.S. Patent May 31, 2016 Sheet 33 of 45 US 9,356,574 B2

Let <current_node, current_position> be the right

pair that is to be adjusted. Let <traversal _counter> Let <current_node, current_position> be the right
equal the right offset value. Let <next node> be the pair that is to be adjusted. Let
node to the right of <current_node> in the node array <traversal_counter> equal the right offset value.
(if there is none to the right itis null). Let <exit_loop>| _—-4200 Let <next_node> be the node to the left of

be false. <current_node> in the node array (if there is none
4205 | totheleftitis null). Let <exit_loop> be false.

I 4300~ 4305

!

Set <exit_loop> to true if:
1. <traversal_counter> is zero or

more,
2. <next_node> is null, or

A
Set <exit_loop> to true if:

1. <traversal_counter> is zero or less,

2. <next_node> is null, or

3. <next_node> contains text mapped
by the CanonlcaI4F2c;rom. 3. <current_node> contains text
— mapped by the Canonical Form.
L 4310
< Is <exit_loop> true? //’/ T
\\\\ 4215 //// /\f: Is <exit_loop> true? \:)
T T 4815 7
T \\\\\ /////
No ~
No
* . 2
set <current_node> to the value of set <current_node> to the value of
<next_node>, decrement the <next_node>, increment the
<traversal_counter> if <next_node> is <traversal_counter> if <next_node> is not
not a Text node or Alt node a Text node or Alt hode interpreted as a
—— interpreted as a Text node, and set Text node, and set <next_node> to the
<next_node> to the node to the right | yeg node to the left of the new
of the new <current_node> in the <current_node> in the node array. Yes
node array. 4320
4220
//// Is \‘\\\ //// Is T
-~ <current_node> T~ "7 <current_node> T~
<_ null or is VnT the type of > < null or is VnT the type of =
[TS~ <current_node>? " { “~~.__ <current_node>? -~ w
T~ 4225 T~ 4325
~ 2 - Yes ~T T Yes
No T~ i No ~ i
i Set l Set
<current_position> <current_position>
Set <current_position> to 0. Set <current_position> to 0.
to the position of the 4235 to the position of the 4335
last code unit of the last code unit of the
text of <current_node>. text of <current_node>.
4230 4330
v
Return <current_node, current_position>. Return <current_node, current_position>.
4340

4240

FIG. 42 FIG. 43

U.S. Patent

Let <current_node, current_position> be the right
pair that is to be adjusted. Let
<traversal_counter> equal the right offset value.
Let <next_node, next_position> be the next code
unit position to the right of <current_node,
current_position> in the node array (if there is
none to the right then <next_node> is null and
<next_position> is 0). Let <exit_loop> be false.
4405

v

Set <exit_loop> to true if
1. <traversal_counter> is zero or less, the
code unit at <current_node,
current_position=> is not the first code unit
of a two-code-unit character, and not both
of <current_node, current_position> and
<next_node, next position> are
whitespace,
2. <next_node= is null, or
3. <next_node, next_position> is mapped
by a code unit of the Canonical Form.

4410

~
&

< Is <exit_loop> true? >
™ 4415

—
\\
~.

e

No

1. Decrement the <traversal _counter>
if not both of <current_node,
current_position> and <next_node,
next_position> are whitespace,
2. set <current_node, current_position>
to the value of <next_node,
next_position>, and
3. set <next_node, next_position> to
the next code unit position to the right
of <current_node, current_position= in
the node array (if there is none to the
right then set next_node to null and
next position to 0)

4420

Return <current_node, current_position>.
4425

FIG. 44

May 31, 2016

4400

Sheet 34 of 45

Let <current_node, current position> be the right
pair that is to be adjusted. Let
<traversal_counter> equal the right offset value.
Let <next_node, next_position> be the next code
unit position to the left of <current node,
current_position> in the node array (if there is
none to the left then <next_node> is null and
<next_position> is 0). Let <exit_loop> be false.
4505

4500~

A

Set <exit_loop> to true if
1. <traversal _counter> is zero or more and
the code unit at <current_node,
current_position= is not the first code unit
of a two-code-unit character,
2. <current_node> is null, or
3. <current_node, current_position> is
mapped by a code unit of the Canonical
Form.

// \\
< Is <exit_loop> true? >
~ 4515 e
~_
No

1. Increment the <traversal counter> if
not both of <current_node,
current_position> and <next_node,
next_position> are whitespace,
2. set <current_node, current_position>
to the value of <next_node,
next_position>, and
3. set <next_node, next_position> to the
next code unit position to the left of
<current_node, current_position> in the
node array (if there is none to the left
then set next_node to null and
next position to 0)

4520

Yes

Return <current_node, current_position>.
4525

FIG. 45

US 9,356,574 B2

U.S. Patent

May 31, 2016

These are actions taken by content scripts
when a user activates (clicks on or otherwise

selects for activation) a Fragment Hyperlink.

/

<4——Yes

¢Noﬁ<i/ Hyperlink have a “maglink_upgrade” ">
. 7

' Yes “~._ with this specification in the//
[DOM? e
7 ™~ ///
No \\\\1\16 1 i//
\ e o
///Has the user been\\\\
-~ offered an opportunity to ™

-

-

T conform to this -

p //upgrade or extend this user agentto an ™.
/\\\ embodiment recently, and has the user///

o | 4600

—" Doesthe Fragment ~ ~~__

—
7/

e attribute’? 7,

\\\ /// 4

S 4610 7 Yes
~_ /

-

~ N

- Hastheuser .

~ -
" agent declared conformance ™

=

-
.

-

"~ asked to not be given this L

- opportunity for a time’/?/T

S 4620
T No

///Has the user expressed\\\
" a desire to never again be offered "~
“_to upgrade this user agent by the "

T currentweb site? 7
T I 4625 7

S
P

No S -

-
- ~

///Can this user agent\ RNy
be upgraded or extended to > Yos——

~
—

T specification? -~

T~ 4630

N
///\\\
/// \\\
No b

e ~

/y/ Is there an alternative\\\

/// user agent that comprises an \\x

_ 7 \\\embodiment that can be installed -~
No~ “.._ onthis plaorm? -7
- ~ 4635

~
~

Yes—— P

Done. lL.e., activate the
href URI of the hyperlink.

Sheet 35 of 45

US 9,356,574 B2

Open a panel window for the user that explains
that he has clicked on a link designed to take him
directly to specific content within the target
document and that his user agent (browser) can
be upgraded or extended to process such
Fragment Hyperlinks. It then gives him buttons to
perform the upgrade, see mare information, ask
him again later, or to not ask him this in the future.
4640

>

///bid the user request an S
<_upgrade or extension, or did he >
“~request more information?
T 4645

Yes

Activate the URI in the Fragment
Hyperlink attribute “maglink_upgrade”.
(This is to obtain the upgrade or
extension. The user will decide whether
to upgrade or extend again, perform the
upgrade or extension as he decides,
and if possible return to the user agent
still running.)

4650

v

Based on the users
response, set the variables in
persistent memory, for this
current domain, that establish
whether the user is to be
reminded in the near future
(or ever) and the current time
stamp for when he was asked
these questions.

4660

4670

FIG. 46

U.S. Patent May 31, 2016

At the user agent: Activate an HTTP request (page
request) to the URI Service for display of the

recovery results in a window; if so configured, the -— 4700

window used may be the activation window of the
Problem Fragment URI set. The HTTP request
comprises the Problem Fragment URIs.
4705

" Inthe service .
_~"database: Does each of the ™.__
" Problem Fragment URIs have >
“._associated search criteria? "
L 4710 s

No

At the service: Locate the targeted content of each
Problem Fragment URI in the database.
4715

v

At the service: Reduce the information content to
reasonably sized search criteria and store it in
association with each Problem Fragment URI.

4720

v

Yes

Problem Fragment URI set to at most a configured
amount of information and a configured number of

—

At the service: Reduce the search criteria of the ¢ N

At the user agent: Combine the results from the (possibly
multiple) searches into a single relevancy based sequence
of search results. Display the combined results, with
version 2 Fragment Hyperlinks for the snippets, as the
search result content of the document from the URI
Service.

4765

Sheet 36 of 45 US 9,356,574 B2

At the service: ldentify targeted advertisements for display to
the user in the user agent search window. If no targeted
advertisements are identified, then identify generic
advertising.

4730

v

The service responds to the HTTP request with a document for
display by the user agent; the document informs the user that
linked content was partly or completely missing for a Fragment
URI activation, it identifies the Problem Hyperlink and its source
document, and declares that a search is underway for the
intended content. The chosen advertisements are also displayed.
The response also contains metadata content that comprises the
search criteria and, if there are any, Replacement Fragment URI
set and their match quality. The user is informed that matches
were previously found having a displayed Match Quality for each
along with its time stamp. They are presented as Fragment
Hyperlinks to be opened.
4735

" At the user agent:

" Are there Replacement -

e Fragment B /’W

YR Sets from the service?
S at

- S S

Yes

e

At the user agent:

The search results
4—— document waits for

" At the user agent:\“\
< Did the user request b

search strings. \\ (more) search user input.
4725 . results? s 4750
— S A755 7 Noo 7 s A AA
T 47 Atthe user
" agent: Did the user ™.
<)) No
~.activate a Fragment -
At the user agent: Obtain additional adverts from the URI ¢ \ URI? P ’
Service and display them. Also obtain (possibly additional) Yes \:\‘}7—55//
search results from the search engine for each of the —¢— N
distinct search criteria. {
4780 Yjs
At the user agent: The Fragment URI is activated normally
v in that these are Fragment URIs and they can themselves

be independently recovered. However, feedback for the
present recovery process is generated and used to
improve recovery for the Problem Fragment URIs of the
present recovery process. To support this feedback, the
Problem Fragment URI set, the search criteria, the Match
Quality values for any Replacement Fragment URI sets,
and whether this activation is of a Replacement Fragment
URI set are associated with the Fragment URI to be
activated in a temporary store.
4790

FIG. 47

U.S. Patent May 31, 2016

Sheet 37 of 45 US 9,356,574 B2

At the user agent: Activate an HTTP search At the service: Identify targeted advertisements for
request (page request) to the URI Service for display to the user in the user agent search window.
display of the recovery results in a window; ifso | __— 4800 If no targeted advertisements are identified, then
configured, the window used may be the activation identify generic advertising.
window of the Problem Fragment URI set. The 4730
HTTP request comprises the Problem Fragment
URIs. v
4705 ; i
The service responds to the HTTP request with a document for
i display by the user agent; the document informs the user that
/// \\\ linked content was partly or completely missing for a Fragment
////In the Service\\\\ URI activation, it identifies the Problem Hyperlink and its source
_—database: Does each of the . document, and declares that a search is underway for the
<// Problem Fragment URIs have \\> intended content. The chosen advertisements are also displayed.
- “~.__ associated search criteria? //// The response also contains metadata content that comprises the
\\\ 4710 7 search criteria and, if there are any, Replacement Fragment URI
—~ set and their match quality. The user is informed that matches
N werg previously found having a displayed Match Quality for each
| along with its time stamp. They are presented as Fragment
No Hyperlinks to be opened.
L/ 4735
At the service: Locate the targeted content of each
Problem Fragment URI in the database. Yes
4715 v
¢ " Atthe user agent: g
At the service: Reduce the information content to " Are there Replacement ™
reasonably sized search criteria and store itin <\\ Fragment URI Sets from the "\
association with each Problem Fragment URI. S service? P \
4120 T ar40 Yes
At the service: Reduce the search criteria of the L] No S At the user agent:
Problem Fragment URI sel to at most a configured -~ Atthe useragent: The search results
__ Did the user request >4——— document waits for

amount of information and a configured number of
search strings.
4725

. activate a Fragment -
- «— . URI?
At the user agent: Request additional adverts from the URI Yes “\._ 4758
Service and display them. Also request (possibly additional)
search results from the URI Service. YJes
4880 v

v

At the URI Service: Generate more results for the search
criteria and combine the results from the (possibly multiple)
searches into a single relevancy based sequence of search

results. Create version 2 Fragment Identifiers for the
shippets. Send the search results to the user agent for
display.
4865

v

At the user agent: Display the results and advertisements
from the URI Service.
4868

e

(more) search - user input.
S results? P 4750
S 4 Atthe user ™. T
_~"agent: Did the user ™. No

At the user agent: The Fragment URI is activated normally
in that these are Fragment URIs and they can themselves
be independently recavered. However, feedback for the
present recovery process is generated and used to
improve recovery for the Problem Fragment URIs of the
present recovery process. To support this feedback, the
Problem Fragment URI set, the search criteria, the Match
Quality values for any Replacement Fragment URI sets,
and whether this activation is of a Replacement Fragment
URI set are associated with the Fragment URI to be
activated in a temporary store.

4790

FIG. 48

U.S. Patent May 31,

At the user agent: Calculate the 4900
collective Match Quality of the
search criteria in the document.
4905

s L
/l/ At the user \\\
-~ agent: Is the Match Quality ™.

US 9,356,574 B2

2016 Sheet 38 of 45

- .

£ sufficient relative to the Match "> No » Eg:g
Ye/s “~Quality of an existing Recovery~ -
» “.._Fragment URI Set? "
] . S 4910 e
Send the URI prefix for this document to \\ //
the URI Service as a potential recovery \// s
/// \\\
N The Common DOM

URI for the Problem Fragment URI set.
Also send the Match Quality of the

Form is sent to the

At the service: Does\‘\\
URI Service for this

- the service have the \:%NO)

search criteria and the full hash (64 bits)
of the Common DOM Form of this /
potential replacement document. /,,‘\‘\Common DOM Form for this - URI
4920 e \‘\ URI and hash? - 4945
/ S 4940 7 —
l / / L e
No / e
/ / T
P / f Yes
T RS / / v
//Haspt‘ai‘:‘;zﬁgf:mn{\\ /] At the service: The Match Quality of the
<\ Fragment URI been 4 / search criteria in the Common DOM
S chocked before? // No Form is verified. If verification fails then
L 4925 e / processing halts for this potential
_/// / recovery URI.
Yes / %
/X\ / At the service: The Match Quality of the
/// \\\ / Problem Fragment URI target strings in
/// . T - / the document is generated as well as the
_~ Attheservice:Has "~ original document Match Quality in the
/// this URI been checked with this ™ / potential replacement.
< hash value or has it been rejected as a = 4955
“w_replacement with this high of a search_~ —
“~.__ criteria Match Quality ? -~ 4
e 430~ A
Yes e At the service: \\\
v No " Does this potential replacement havea = ™~_
~~._Match Quality sufficient to replace an existing_—~
Done “~~__Replacement Fragment URI set?
4935 g 4960 -
\\\ - - Yes
A 4
At the service: Create the actual Replacement

Fragment URI set from the best matches for the

At the service: Associate this potential URI
prefix with the Problem Fragment URI set as a
known inferior replacement. Also store the
Match Quality numbers as well as the Match

Problem Fragment URI target strings. Store this
set in place of its previous quality counterpart.
4970

Quality of the search criteria in the document.
4965

FIG. 49

U.S. Patent May 31, 2016

Retrieve the target string or strings associated
with the version 2 Fragment Identifier from the
navigation history, these are the search criteria
for recovery.
5005

——— 5000

~
— ~.
~.

e
-7 Were snippets ™~
—<__found in the navigation /\/\
~~_history for this URI?
T~ 5010
\\W//
Yes
A 4

Create a combined search criterion
and a search engine URI, and then
No activate the search URI.
5020

A

End
5025

FIG. 50

No

Truncate each string to a
; h +——
nominal maximum number of
characters in a snippet, and
then expand to complete
terms or words.
5125

Sheet 39 of 45

///Ianger than three times the ™

US 9,356,574 B2

P \\\\ ///‘ 5100
" Arethere more

<__ranges than the configured >
S~.maximum of snippets?

~.

~._ 5105 -~

~.

~ P
~
~—

Yes

v
Drop from processing the
ranges that come latest in
the document, to arrive at
the maximum number of No
shippets.
3110

\{

Obtain the strings from the

ranges, with expansion to

include whole words or terms €«——
and minimum lengths.

e~ st
" Are there fewer ~~_
_~strings than the configured -

h S
“~._ maximum number of -~
“~._ snippets? 7
5120
_\///
Yes
//X\\
e ..
- -

.
_~"Are there strings -

S~ maximum length for
~) e
S~ snippets? -~

~..5130 7
N~

>
~
s

Yes

v
Choose a longest string for
division and divide it at the
start of a word near the
middle.
5135

FIG. 51

U.S. Patent May 31, 20

16 Sheet 40 of 45

5200 P
At the user agent: ™~._

7
e

US 9,356,574 B2

e

/ Is this a
- “"MIIE or has <mh> hours passed \— Is the document marked 7
<~ since the user agent notified the search T ~~.no_crawl” or "noindex™?
W “~.__ engine of accessing this URI? " T~ T 5205
Yes T 5207 ~ 7 \\\\\\‘ S~ T
At the user agent: calculate the \\\\\\
Common DOM Form and its hash for At the search engine: Update the o~
the document. Send the hash, URI, global and URI specific access
and MIIE status in a nofification of and MIIE frequency statistics.
access to the search engine. 5215
///At the search ™_
e _~~"engine: Does the search ™-_
7 T ~"">~__engine index this URI? -~ Yes
At_ the search /// At the search ™_ /Yes . 5225 e
engine. Mar_k_ the — englne Does the Common DOMA\(\\\ 7
URI as modified. NO’\\/ - Form hash match the hash of the Iatest /‘/\A\ o~
5248 ~>~._ Common DOM Form T T
“>~__of the document? " S
S \\\\\\m////// Yes\
/!// T o~ P \\\ No
" Atthe search engine: "~ 7 T T
“” Has the maximum time interval > 7 s
~~.__ for re-indexing been /// " At the search engine: e
o ~_ exceeded? /// e Do the access and MIIE frequency — ™__
1 S~ 5235 T~ statistics for this URI support ///’TO
—~ T re-indexing how? 7
No g A s245 i
- S / . -
- ~ No ~—
_~~At the search engine: ™ / e Done.
7 ‘Are there fewer than <m> past T/ ya 5250
\T\\ Common DOM Forms for this -~~~ // AAA
Sl document? T /
. 5240)(es
Yes T~ / At the search engine: Construct or retrieve
/At the ™~ / from memory a version 2 Fragment Identifier
// search englne \\ Ve for this document that has ranges for the
Yes Do the <m> most reoent \5 common content of the Alternative Canonical
7 Alternatlve Canonical Forms differ in ™ No—p Forms of the last <m> versions of the
r\\ more than <k> percent, or do they /// Common DOM Form. Send this Fragment
Yes \\\ differ in the title or /// |dentifier to the user agent with a hash of the Yes
~~._ description? - Canaonical Form of the title and description.
p 2 T 5255 5260
//// N T
B ¥ Atthe user \\\
¥ agent: Is the useragent ™. Py
\\V\ configured to provide "%~ 7 Atthe T
P mdexmg content” - | \\\No _~"user agent: Does the \\\
Yes . 5270 _ No e -7~ version 2 Fragment Identifier >
| N \ S~ match in the Alternative Canonical Form of the ™
Q ‘\\ document and does the hash of the ///
The Common DOM Form is . “~~__ Canonical Form of the tite and "
sent to the search engine The user agent informs the "~ Description match? _—~
from the user agent for search engine that re- N T~ 5265
. .) . indexing is indicated. ~~ S
indexing or re-indexing. 5280 S ~
5275 == ~

At the search engine: index or re-index and update the time stamp

5285

for the last time this URI was indexed. Mark the URI as unmodified.

FIG. 52

U.S. Patent May 31, 2016 Sheet 41 of 45 US 9,356,574 B2

saqo_| V0T | Text | AUTvT | vT | vaT | Text | Tew
Node 1 Node 1 5312 Node 2 |Node 3 |Node 4 | Node 2 | Node 3
*|Flolo|d| |Flolr Tihioju|g|h|t

5320 flojojd|t|hjojug|h|t
Alt Text Text
5330 \odot | noast |Node T tT ode 3 Noda 4 | Node 2| Node 3
5312 5335 | 5340
*|Flolo|d| |Flolr Tihioju|g|h|t
5350 flojo|d|f|o|r|t|hlojulg|h|t
vnT vnT vnT Text
5405 L\e/:T1 L-(Zi)'(t(i) :n't 4 Len 1| Len:1 | Len: 1 Len: 8
’ ’ ’ 5420 | 5430 | 5435 5440
*|Flojo|d| |F|o|r Tihioju|g|h|t
VnT Text
5450 L\e/:T1 L-(Zi)'(t(i) :n't 4 Len3 Len: 8
’ ’ ’ 5460 5440
*|Flolo|d| |Flolr Tihioju|g|h|t

FIG. 54

U.S. Patent

May 31, 2016

Sheet 42 of 45 US 9,356,574 B2

Input: Boolean, true if "full relevant content”
Fragment URIs are requested.
Input: Boolean, true if full-sentence Fragment
URIs are requested.
Input: Boolean, true if aggregated snippet
ranges in Fragment URIs are requested.
Input: Boolean, true if the document is internally
marked MagLink Friendly.
Input: The URI prefix for the document.
Input: The document’s Commaon DOM Form.
Input: The snippets Common DOM Form ranges
(which are object based for the Common DOM
Form) that are to be displayed in search results,
each in association with the Common DOM
Form range of identified relevant (i.e., search
identified as relevant) content from which the
shippet was taken.
Input: Identification of any subsets of the
shippets that are associated rich snippets. This
can be empty.

5505

For each snippet that is not a
- N rich snippet (not identified in a
" Have “full relevant ™. rich snippet subset from the
Content’ Fragment URIs input), assign the range of the
~._ beenrequested? - snippet itself to its associated

e bs10 7 content range.

T No—pf

—»

5515
5500 T
Yes
) 4

//’/Have full-sentence ™_
< Fragment URIs been
~~._ requested?

S 5520

Yes

No
\ 4

Expand each associated

Create a version 1 Overall Fragment
Identifier using each distinct associated
content range (two or more shippets can
have the same associated range) in the
order in which it appears in the Common
DOM Form. Then append the Overall
Fragment Identifier to the URI prefix to
obtain the Overall Fragment URI.
Associate with this Fragment URI an
ordered set of all of the snippet strings in
order of appearance in the Common
DOM Form.
5535

_~"Have aggregated snippe\t\\l

<\ ranges in Fragment URIs > Yes—M

.

T beenrequested? -~
. 5540

For each snhippet create a version 1 Fragment
URI and assaciate it with the snippet. The
Fragment Identifier of each of these
Fragment URIs is created using the

-

content range to include full
sentences. (This is a
language specific
transformation, albeit a
simple one.)
5525

Associated content ranges that
overlap with other associated content
ranges (for any of the snippets) are
accumulated into a combined
associated content range for each
affected snippet. (Often associated
content ranges do not change since
overlaps may not occur.)

5530

For each snippet create a version 1 Fragment URI and associate it with the
snippet. The Fragment Identifier of each of these Fragment URIs is created
using the same ranges as the Overall Fragment Identifier, but the
associated content range associated with the particular associated snippet
of the Fragment Identifier is set as the first range (so that it will be scrolled
into view when the Fragment Identifier is interpreted). Each created
Fragment Identifier is appended to the URI prefix to obtain a Fragment URI.
Associate with each Fragment URI an ordered set of all of the snippet
strings in order of appearance in the Common DOM Form, except that the
string of the associated shippet is first in each set.

5545

Return the Overall Fragment URI and its associated ordered set of snippet
strings. Also return the input shippet ranges, each together with its associated
Fragment URI and ordered set of snippet strings. Depending on search

associated content range of the snippet.

Assaciate with each Fragment URI the

shippet string of the associated snippet.
5550

engine configuration, the returned URIs may be in the indirect Fragment URI
form.
5560

FIG. 55

U.S. Patent

May 31, 2016

Input: Boolean, true if aggregated snippet

Input: The URI prefix for the document.
Input: An ordered set of snippet strings.

ranges in Fragment Hyperlinks are requested.

Sheet 43 of 45

US 9,356,574 B2

Identify any subsets of the snippets that are
associated rich snippets. For this purpose, a set
.| of consecutive short snippets are presumed to

| be associated rich snippets. The results can be

5605

5600

For each snippet that is a rich snippet
(i.e., identified in a rich snippet subset
from the input), associate the whole
identified subset of related rich shippet
strings with each rich shippet in the set

empty.
5608

Create a version 2 Overall Fragment
Identifier using each snippet in the same
order as the input. Then append the
Overall Fragment Identifier to the URI

in the order that it appears in the input.
For other snippets (not rich shippets)
associate a set containing only the
snhippet string itself.

prefix to obtain the Overall Fragment

URI. Associate with this Fragment URI

the ordered set of the snhippet strings.
5610

5615

///Have aggregated snippet ™~
< _ranges in Fragment Hyperlinks -~ Yes—»
"~ beenrequested? 7
S se0

For each snippet create a version 2 Fragment URI and associate it with the
snippet. The Fragment Identifier of each of these Fragment URIs is created
using the same strings, but the range associated with the particular associated
snippet of the Fragment Identifier is set as the first range (so that it will be
scrolled into view when the Fragment Identifier is interpreted). If the associated
snippet is a rich snippet, then the other ranges of the set of associated rich
snippets are set as the ranges following the first range. Each created
Fragment Identifier is appended to the URI prefix to obtain a Fragment URI.
Associate with each Fragment URI an ordered set of all of the snippet strings
in the order of the appearance of their associated ranges in the Fragment
|dentifier of the Fragment URI.

5625

For each snippet create a version 2
Fragment URI and associate it with the
snippet. The Fragment Identifier of each
of these Fragment URls is created using
the snippet string set associated with the

snippet; one range of the Fragment

Return the Overall Fragment URI and its
associated ordered set of shippet strings.
Also return the input snippets with their

Identifier is created for each snippet in
the set. Associate with each created
Fragment URI the snippet string set

associated with the snippet.
5630

associated Fragment URIs and ordered set of
shippet strings.
5635

FIG. 56

U.S. Patent May 31, 2016 Sheet 44 of 45 US 9,356,574 B2

Input: The HTTP request for an indirect The Redirect Service sends a document to the
Fragment URI.))
5705 5700 user agenF that explains t_hat he has chcked_ ona
= - link designed to take him directly to specific
content within the target document and that his
; user agent (browser) can be upgraded or
T T extended to process such Fragment Hyperlinks. It
7 T then gives him buttons to perform the upgrade,
/// Does the HTTP request\\\ see more information, ask him again later, or to
¢N0*<////have an “X-Mag-Link-Agent” headery\\\\ not ask him this in the future.
~~._and does the Fragment URIl identify 7 5740
“~._ specific content? "/
14 [R Yes
\\\v//// o //
_~"Is the version nun1ber\\\\\\ ////// \\\\\\
q—Yes - of the implementation the - _~Did the user request an™
~latest for the platform and.~ e f . Ry
IS ser agent? P \\upgrade or exter_mon, or_dld he//
N (’) 5715 “-fequest more mformatlor)’g/
/é///\\\ v-/ \\\\\ M /////
/// Has the user been \\\ [
" offered an opportunity to
" upgrade or extend this user agent to an ™~ Yes
/<\\ embodiment recently, and has the user 7 i
/ “~._ asked to not be given this -~
Ye/s \\\o\pportunity fora tim%’;/(
/ Ny 5720 7 Activate a URI for upgrading to an
‘ S~ No embodiment. (This is to obtain the No
upgrade or extension. The user will
///\\$\ decide whether to upgrade or extend
e Ny again, perform the upgrade or extension
- T as he decides, and if possible return to
/// Has the user expressed \\\ the user agent still running.)
¢—Yes <_ adesire to never again be offered >
\\\to upgrade this user agent?///
No \\\ P e
v L
//// Can this user agent \\\\\ Based on the users
<(_ beupgraded orextendedtoa = > Yes— W response, set the variables in
“~__current implementation? _—~ persistent memory, for this
S~._ 5730 current domain, that establish
\\\\\ ///// whether the user is to be
[//A\\ reminded in the near future
No S (or ever) and the current time
y//I; there an alternativ\e\\\ stamp for when he was asked
el - N these questions.
~ user agent that comprises a N
~ . . > 5760
_—~" .current implementation that can bg// _
No~~ “~._installed on this platform?
//// \\\\ 5735 /’//
A e -
\ 4
Yes— P
Done. |.e., redirect the URI.

5770

FIG. 57

U.S. Patent May 31, 2016 Sheet 45 of 45 US 9,356,574 B2

User Agent
5805
CPU -
5810 Wireless Wireless
- communications communications
—— device (including device (including
‘ antenna). f— antenna)
M;;‘]%ry 5820 5850
User Agent Wired LAN switching
Software Communications network
5830 Device 5855
5825 = LAN switching
Secondary network
Storage 5860
5835
Video I/O Sound /O
Device |— Device
5840 5845
Internet Switching
— Network
5865

Screen Speaker Microphone
5846 5847 5848

LAN switching network
2870
Wired Wired
Communications Communications
Device Device
5873 5873
’j ’j LAN switching
network
CPU CPU 5890
5875 5875
\ \
Memory Memory Search Engine
2878 5878 Service
5895
URI Service Redirect Service
Software Software
5880 5885
Secondary Secondary
Storage r Storage
5883 5883
URI Service Server Redirect Service Server
5888 5889

FIG. 58

US 9,356,574 B2

1
SEARCH AND NAVIGATION TO SPECIFIC
DOCUMENT CONTENT

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. provisional
patent application Ser. No. 61/728,696, filed Nov. 20, 2012,
the entire contents of which are incorporated herein by refer-
ence in entirety.

BACKGROUND

The design of hyperlinks, search engines, and browsers as
well as many documents found in the Internet centers around
first finding and then displaying desired content. This is what
those components mainly do. Efficiently, conveniently, and
reliably finding information and displaying it are core guiding
design goals of the whole of the Internet and its components.
Improvements in any aspect of these processes are earnestly
sought.

Individual documents found on the Internet can be large,
and user agents (typically Internet browsers) provide users
with functionality similar to document editors for finding
content. Typically, a user can type an arbitrary string, or copy
an arbitrary string, into a “find” box of a browser and then
search for that string. Often, he will copy text from the docu-
ment itself into a “find” box, and search for additional
instances in that same document. Also, he will copy content
from the document and paste it into a search query to be sent
to the search engine, in order to find instances of that content
in other documents. A user may also open other documents
and search for content that he found elsewhere in those docu-
ments.

When searching on the Internet using a search engine ser-
vice, a user might enter the query string “brown cow”; in
response the search engine service will typically return a
document with several hyperlinks to web pages that the
search engine service deems relevant. A search engine service
also typically presents evidence of the relevance of the docu-
ment represented by at least some of the hyperlinks, in the
form of snippets constructed from the document’s contents
presented in proximity to the hyperlink for that document. For
example, one document might have an associated snippet that
reads, “how now brown cow.” The user can read this snippet
evidence, and further evaluate the relevance of that particular
document to his actual intentions—which typically are not
entirely captured by the interpretation of the query. Having
determined that he wants to see the content of a document
represented by a hyperlink in the search results, the user then
clicks on the hyperlink and in response the browser presents
or displays the content of the document.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments are illustrated in referenced fig-
ures of the drawings. It is intended that the embodiments and
figures disclosed herein be considered illustrative rather than
limiting.

FIG. 1 illustrates prior art using a short substring match to
filter potential matches for a standard hash comparison.

FIG. 2 illustrates using a rolling n-gram hash for searching
and simultaneously calculating the required number of bits.

FIG. 3 illustrates using an n-gram hash to filter matches for
Fragment Identifiers, and then using a standard hash-based
comparison to find all content-based fragment matches.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 illustrates using an n-gram hash alone to find all
content-based fragment matches.

FIG. 5 illustrates Canonical Form mapping with unique
target text.

FIG. 6 illustrates Canonical Form mapping with non-
unique target text.

FIG. 7 illustrates Canonical Form mapping with a non-text
selection.

FIG. 8 illustrates Canonical Form mapping with a single
node non-text selection.

FIG. 9 illustrates Canonical Form mapping with combined
text and non-text selection.

FIG. 10 illustrates Canonical Form text with partitioned-
hash blocking.

FIG. 11 illustrates creation of a recoverable Fragment URI
and Fragment Hyperlink from a user selection at the user
agent, and placing the results in the clipboard.

FIG. 12 illustrates creation of a Fragment Identifier using
the target document and a selection.

FIG. 13 illustrates calculation of unique prefix and suffix
lengths, hash values, and required bits.

FIG. 14 illustrates determining the values and types of
offsets for a range.

FIG. 15 illustrates determining the type and value of the left
offset.

FIG. 16 illustrates determining the type and value of the
right offset.

FIG. 17 illustrates behaviors of search engines and user
agents when the user invokes a search.

FIG. 18 illustrates processing search results at the search
engine to create Fragment Hyperlinks.

FIG. 19 illustrates processing search results at the user
agent to create Fragment Hyperlinks.

FIG. 20 illustrates creation of version 2 URIs using Frag-
ment Identifiers from only the target strings.

FIG. 21 illustrates actions of the user agent when the user
selects a hyperlink for activation.

FIG. 22 illustrates actions of the user agent when activating
(opening) a URI.

FIG. 23 illustrates actions on DOM change event notifica-
tions for documents opened in a user agent.

FIG. 24A illustrates actions on user input based selection
change notifications.

FIG. 24B illustrates actions on HT'TP 302 and 303 redirect
notifications.

FIG. 25 illustrates actions on Fragment Identifier timer
event for documents having version 1 or 2 Fragment Identi-
fiers.

FIG. 26 illustrates modifying the display of a document
based on Fragment Identifiers.

FIG. 27 illustrates producing a DOM range from a version
1 Fragment Identifier.

FIG. 28 illustrates producing DOM ranges from version 2
Fragment Identifiers.

FIG. 29 illustrates displaying the ranges by altering the
DOM and selection

FIG. 30 illustrates version 1 Fragment Identifier range
search.

FIG. 31 illustrates creating target matches from secondary
search elements.

FIG. 32 illustrates searching simultaneously for one or
more segment matches with a rolling n-gram hash.

FIG. 33 illustrates finding a partial match based on seg-
mented n-gram match arrays.

FIG. 34 illustrates version 2 Fragment Identifier range
search.

US 9,356,574 B2

3

FIG. 35 illustrates processing a Canonical Form match into
a DOM range.

FIG. 36 illustrates finding the final left position in the
mapped node array.

FIG. 37 illustrates finding the final right position in the
mapped node array.

FIG. 38 illustrates adjusting the left position relative to a
mapped node array according to a negative left offset value of
type VnT (non text visual nodes).

FIG. 39 illustrates adjusting the left position relative to a
mapped node array according to a positive left offset value of
type VnT (non text visual nodes).

FIG. 40 illustrates adjusting the left position relative to a
mapped node array according to a negative left offset value in
code units.

FIG. 41 illustrates adjusting the left position relative to a
mapped node array according to a positive left offset value in
code units.

FIG. 42 illustrates adjusting the right position relative to a
mapped node array according to a positive right offset value
of type VnT (non text visual nodes).

FIG. 43 illustrates adjusting the right position relative to a
mapped node array according to a negative right offset value
of type VnT (non text visual nodes).

FIG. 44 illustrates adjusting the right position relative to a
mapped node array according to a positive right offset value
in code units.

FIG. 45 illustrates adjusting the right position relative to a
mapped node array according to a negative right offset value
in code units.

FIG. 46 illustrates content scripts informing a user that
Fragment Hyperlink activation could be more functional ifhe
upgraded.

FIG. 47 illustrates version 1 Fragment URI recovery using
an external search engine.

FIG. 48 illustrates version 1 Fragment URI recovery by a
URI Service that is also a search engine.

FIG. 49 illustrates recovery feedback for maintenance of
Replacement Fragment URI sets.

FIG. 50 illustrates version 2 Fragment URI recovery.

FIG. 51 illustrates navigation history (including book-
marks) snippet creation for Fragment Identifier Content
Records.

FIG. 52 illustrates efficient search engine indexing with
Canonical Form hashes, Fragment Identifiers, and user agent
integration.

FIG. 53 illustrates the relationship between the Canonical
Form and Alternative Canonical Form.

FIG. 54 illustrates the common DOM Form structure,
including the compacted representation for transmission.

FIG. 55 illustrates creating Fragment URIs for search
results at the search engine for a single document.

FIG. 56 illustrates processing search results for a document
at the user agent to create Fragment Hyperlinks.

FIG. 57 illustrates redirect Service actions on receiving an
HTTP request for an indirect Fragment URI, including
informing a user that Fragment Hyperlink activation could be
more functional if he upgraded.

FIG. 58 illustrates a typical physical architecture for real-
izing embodiments, including a communications capability
that enables the sending and receiving of messages between
various elements of the physical architecture.

DETAILED DESCRIPTION

When a user examines search results, he may wish to
initially see the context of the evidence that he saw in the

15

30

35

40

45

55

65

4

searchresults. In other words, he may wish to see the evidence
that was presented to him (e.g., the snippet or snippets) in the
full context of the document contents. For example, he might
want to see the context around “how now brown cow” and not
just see some instance of “brown cow”. While the user can
achieve this by first opening and then reading through the
entire document, in many situations such a thorough reading
is inefficient if not entirely impractical. By just skimming a
user may fail to find the searched—for evidence because it is
no longer in the document—or it may have been changed
since the document was indexed by the search engine; he
cannot tell whether the snippet evidence is no longer present
or he just missed what he was looking for, unless he does a
thorough reading.

A possible efficiency improvement over doing a thorough
reading is to manually copy the text of a snippet of interest
from the search engine display into a clipboard and then, after
the document of interest is displayed, pasting the snippet into
the “find” box and use the find functionality by pressing the
“next” and “previous” buttons to find matching snippets.
There are many circumstances in which this is problematical
as a solution; for example, the snippet evidence might not
actually be in the document because the document changed.
Also, the snippet evidence is often altered, sometimes neces-
sarily, by search engines in various ways, making it an inexact
string match. Because of these and other difficulties, without
resorting to carefully reading through the whole document it
is difficult to know with any confidence that the snippet evi-
dence is in fact not present.

As a matter of productivity in many employment situa-
tions, it is important how quickly these operations can be
done; browsing through search results and quickly and reli-
ably finding any relevant information is a ubiquitous goal.
The aggregated acts that together manually select text from a
snippet in search results, copy the selected text into a clip-
board, and paste the copied text into a “find” box, in addition
to the selection act of clicking on a hyperlink, are time-
consuming, error-prone, and tedious relative to simply click-
ing on a hyperlink. While less reliable and flexible than other
embodiments, some embodiments operate in part by auto-
mating part or all of the above described manual process of
getting snippet text out of a search results display, placing that
snippet text into an existing find box on a browser, and then
the user presses the existing “next” and “previous” buttons to
distinguish, including scrolling to, matching text in an opened
document associated with the snippet text. Other embodi-
ments go part way in this automation process; for example, by
automatically getting snippet text from the search results
document into a clipboard along with selecting the document
for display in a single action. From there the user can finish
the task by pasting the clipboard contents into a find box.

In some browsers and other user agents, there is a single
“find” box for all open documents. A user could manually
type search text of interest into that single “find” box and
perform the same find operation on each document that is
opened after a search query; every time he changes the query
for the search engine he may need to change the query in the
find box. This approach fails to distinguish between the spe-
cific snippet evidence that is presented in the search engine
results, may find too many matches to be useful, and it could
fail to find a snippet of interest. While this can be done by a
user, the required user inputs include arbitrary text input into
the find box, which means that all document text that can be
found by the find functionality is likewise distinguished.

Both of these manual operations for distinguishing exact
matches to snippets are commonly used and error prone in the
ways described. Reducing the number of distinct user actions

US 9,356,574 B2

5

needed to achieve the desired outcome is one means to
increase reliability and productivity. Here we count the mini-
mum number of single actions performed for the copy and
paste operation described earlier. At a minimum, there are two
single actions for delimiting the left and right bounds of the
selection to be copied, at least one action to effect the copy, at
least one single action to move the cursor or focus point to the
“find” box, and the paste requires at least one single action.
Then, there is at least one movement or positioning and one
single action for activating the hyperlink for the document.
Thus atleast 7 single actions are performed by this method. In
practice the movements, selections, copy and paste opera-
tions are more tedious; additional actions that may be
required include making a request for the find box to be open
for paste, scrolling or panning to make action points visible,
and an initial request to actually find a first matching string
may be required. In some embodiments all of this is benefi-
cially reduced to a single action.

The method of directly typing in a snippet into the find box
cannot be included in a useful set of distinguishing inputs for
a distinguishing context because anything can be typed and
the inclusion of such input capability in a set of distinguishing
inputs makes every part of the document that can be found in
this way distinguished. Permitting such arbitrary typed inputs
leaves no inherent way to distinguish between one string and
another in a document—they are all in effect distinguished
depending on what the user inputs. In addition, entering such
a search query by hand takes at least one action to select the
point to enter the text, and snippet searches shorter than 7
characters are essentially useless in general. Thus, this
mechanism effectively requires more single actions than the
copy-and-paste mechanism and is tedious as well as error
prone.

A focus of some embodiments is to enable the user to
efficiently navigate from search engine results to document
snippets of interest in the source document. In some embodi-
ments this occurs even though the version of the document
that is indexed is different from the version that the user
obtains when following the hyperlink.

Since various applications can take a user to a particular
part of a document and distinguish that part, rapid navigation
to a particular document snippet could occur inadvertently
and in a manner that doesn’t provide the intended benefit; for
example, a simple annotation could have previously been
attached to a particular word in a document that happens to be
located within a document snippet of interest. When the docu-
ment is opened, such an annotation might automatically be
attached to an instance of “how now brown cow”, which
might also have been the snippet of interest in search results
from which the document was opened.

To avoid such an annotation from satisfying the conditions
of'a description of the desired behavior, and thereby causing
inadvertent confusion and interfering with a clear description,
when precisely describing the desired functionalities of some
embodiments it is useful to describe the behavior in terms of
a pair of searches that produce snippets from the same docu-
ment. If the user can efficiently navigate to only one or the
other set of snippets and the user can visually identify the
snippets of interest from the rest of the document, then those
two snippet sets are usefully distinguished by the navigation
mechanism. An annotation that is attached to the document
cannot meet this requirement because it distinguishes the
same content. In the “how now brown cow” example, it would
always annotate “how now brown cow”, which might by
accident satisfy the requirements for one search but would not
satisfy two unrelated searches.

20

40

45

55

6

The desired functionality cannot be demonstrated in every
document; for example, a document in which the text of every
word is the same, although it could be repeated thousands of
times, has nothing useful to distinguish—any snippet
sequence from the document would appear everywhere.

Likewise, notall query pairs can be used to demonstrate the
benefits; for example, if both queries were the same, then the
same snippets would result and the “how now brown cow”
example above could accidentally take the user to the “right”
document snippet for both. However, for most documents that
are neither trivially short nor trivially repetitive, a pair of
search queries can be written for which the resulting snippets
from the two queries appear separately in the document.

Documents served out via the Internet are increasingly
dynamic, i.e., they have content that is different for different
types of accesses or from one access to the next. In many
cases, no two sets of document content are identical when
they are served out, and in addition the content provided to
search engines may be different to anything ever served out to
browsers or other user agents. In addition, by the action of
active content or scripts, a document may change after it is
transmitted or may change dynamically as it is displayed. Of
course, if the versions of the document are so different that
there is no commonality between them, then whatever the
search engine finds in its index for that document is unrelated
to the content of a later access to the document. However,
even when every served out copy of a document is different in
some way or is modified at the user agent that displays it, it is
likely that the different copies have considerable common
content; moreover, only content that will be common long
enough for users to search for that content is usefully indexed
in a search engine. Therefore, it is useful to have a mechanism
that works effectively in an environment of dynamically
changing documents. Some embodiments have this capabil-
ity.

Introduction

Computationally speaking, a symbol is a distinct identifier
that is computer readable. Sequences of symbols may repre-
sent sequences of any set, such as characters from a language
script or set of scripts, image color intensities, DNA base
pairs, and protein sequences. Such sequences range from
those where symbols may repeat without restriction to those
where a particular symbol appears at most once.

A sequence of n symbols is called an n-gram, and its hash
value is called an n-gram hash. In application, large numbers
of n-gram hashes are calculated efficiently over a lengthy
symbol sequence.

There are particular hash value computations that are espe-
cially useful for computing some n-gram hashes. These
hashes are computed over the n-symbol sequences that result
when a window that is n symbols long moves over the input
stream, one character at a time; i.e., a sequence consists of the
last n-1 symbols of the previous sequence and an additional
symbol. The terms “rolling” and “recursive” apply inter-
changeably to identify computations over these sequences
using a hash function with three inputs: the hash value of the
previous sequence, the symbol to be removed from the start of
the previous sequence, and the symbol to be added to its end.
A rolling hash function updates the previous value and does
not repeat the hash calculation over the n—1 symbols common
to both sequences. If a rolling hash calculation procedure is
known to exist for a particular hash function, it is called a
rolling or recursive hash function. Its advantage compared to
other hash function calculations is its computational effi-
ciency. The use of rolling hash computations reduces the cost
of repeated n-gram hash calculations and the savings can be

US 9,356,574 B2

7

substantial even for small values of n. The savings generally
increase as n increases with specific benefits depending on the
rolling hash function chosen.

While it is widely believed that some hash functions, such
as the standard cryptographic hash functions, are not rolling
hash functions it is generally not definitively known whether
a particular hash function is a rolling hash function unless
someone has invented a rolling computation procedure for
that hash function or the function has been shown definitively
to have some characteristic incompatible with rolling hash
computations.

The state of the art for recursive (rolling) n-gram hashing is
presented in “Recursive n-gram hashing is pairwise indepen-
dent, at best”, a paper by Daniel Lemire and Owen Kaser,
herein called Lemire-Kaser. Lemire-Kaser rigorously proves
that families of fully randomized irreducible-polynomial
based rolling hash functions, collectively called “GEN-
ERAL”, have an important quality of distribution property
called pairwise-independence. Lemire-Kaser further proves
that no rolling hash function family can have better than
pairwise-independence. Thus Lemire-Kaser proves that
GENERAL has the best possible quality of distribution prop-
erty within the class of rolling hash functions. Their paper
provides multiple methods for implementing GENERAL and
further studies the computational cost of those methods in
rigorous mathematical detail. Lemire and Kaser also imple-
mented and empirically tested the relative performance of
GENERAL implementations against other hash functions. In
the end, Lemire-Kaser recommends the use of other hash
functions over GENERAL in all circumstances.

The state of the art in the application of n-gram hashing is
realized by cross-matching arbitrary n-character-sized pieces
from two files, typically done to efficiently synchronize the
contents of the files using shorter hash values (relative to n
characters, so n is relatively large in this application) for the
n-character blocks. Multiple patents describe such matching
as a component of what has come to be known as de-dupli-
cation. (Note that some forms of de-duplication do not use
rolling n-gram hashing.) In these schemes the use of efficient
rolling n-gram hashes is often combined with standard hashes
in a two-stage process. The n-gram hash is used to efficiently
detect most non-matching comparisons and eliminate them
from fruitless primary hash calculations. The standard hash,
usually having many more hash bits, is calculated for a poten-
tially matching n-gram only if the efficient rolling hashes
match. Ifthe rolling hash values do not match, the two under-
lying strings differ so there is no need for further comparison.
If the rolling hash values match, however, the underlying
content might be different because of the unreliability of
efficient n-gram hashes, so a more reliable hash value is
calculated to eliminate false positives. The second hash func-
tion used in commercially viable implementations is typically
a cryptographic hash function.

Fragment identifiers are given as suffixes on Universal
Resource Identifiers (URIs); URIs are somewhat imprecisely
but commonly called Universal Resource Locators (URLSs).
RFC 3986, “Uniform Resource Identifier (URI): Generic
Syntax”, specifies that fragment identifiers follow ahash (‘#’)
character at the end of a URI. Other specifications consider
only the part before the hash to be the URI and, when fol-
lowed by a fragment identifier, the URI becomes a URI ref-
erence or “URIref”. For example, in its Resource Description
Framework document “RDF Primer” (found on the
www.w3.org web site in the document referenced by TR/rdf-
primer/), the W3C standards organization states that “A URI
reference (or URIref) is a URI, together with an optional
fragment identifier at the end.” The part before the hash most

10

15

20

25

30

35

40

45

50

55

60

65

8

commonly identifies a document, and the part after the hash
identifies a particular part of that document, i.e., a “frag-
ment”. A basic motivation is that a fragment identifier at the
end can precisely identify relevant content in a document, and
hyperlinks utilizing such fragment identifiers may more pre-
cisely and concisely contribute to the intended meaning of
hypertext.

The current state of the art for arbitrary identification of
specific content by URI fragment identifiers is reviewed and
advanced in a paper by Sebastian Hellmann, Jens Lehmann,
and Soren Auer, called Hellmann-Lehmann-Auer here,
which has been preliminarily ‘published’ on the Internet as
“NIF: An ontology-based and linked-data-aware NLP Inter-
change Format”, and can currently be downloaded from the
document papers/2012/WWW_NIF/public.pdf found on the
web site svn.aksw.org. It is a draft that is in the peer-review
process prior to formal publication, so edits might occur.

Hellmann-I.ehmann-Auer distinguishes between fragment
identifiers using position-based schemes and those using con-
tent-based schemes. It shows via logic and by empirical
examination of Wikipedia modification logs, that position-
based schemes are fragile—with high probability they break
in the face of modifications to a target web page. Hyperlinks
that depend on them are even more susceptible to the ubiqui-
tous broken-link problem, commonly called ‘linkrot’, than
simple URIs. Linkrot has been identified by multiple inves-
tigations as a fundamental impediment to web usage and
many users avoid web pages plagued by it. Document writers
know that if their content has linkrot, their readership can
decline severely. Nevertheless, prior art provides few
examples of alternative content-based fragment identifier
schemes even though they are more resistant to linkrot, and
fewer still where the fragment identifier does not grow in
length as the identified content grows in size. It is perhaps
revealing that, at this late date, Hellmann-I.ehmann-Auer felt
it useful to empirically prove by test results that position-
based fragment identifier schemes are highly susceptible to
linkrot and that the problem is diminished by using content-
centric fragment identifiers.

Unbounded length content identifier schemes essentially
append the target string to the end of the URI, which can only
work up to a somewhat fuzzy limit in length, because user
agents that interpret URIs (e.g., web browsers) limit their size
for practical reasons. Moreover, long URIs are inefficient
even if their length is under some ad-hoc limit. Additional
disadvantages are that URIs may be encoded in their entirety
as arguments to much longer URIs. Users routinely encounter
and use such URIs-within-URIs when they click on hyper-
links in search engine results. Thus the effective limit may be
much shorter and less well defined than the truncation point
for any particular browser. If arbitrary content is to be iden-
tified, fragment identifier schemes cannot grow proportion-
ately with the size of the text identified, and being shorter than
the content is generally better.

Fragment identifiers using position-based schemes have
the advantage (for average non-contrived documents) of only
growing logarithmically with the sizes of the target docu-
ments and identified fragments. However, schemes such as
some XPath-based XPointer schemes of XML that identify
positions in the markup (as opposed to positions relative to
e.g., the beginning of content), can be made to grow as fast, or
faster, than the size of the document’s content. Markup paths
can be made arbitrarily deep independently of the size of the
content, and each step down in such a path may be encoded
separately to arrive at an XPath position. Thus it is possible to
artificially construct a web page with little content for which

US 9,356,574 B2

9

either the automated XPointer creation will fail or the created
link will fail due to its large size.

Positions have no fundamental relationship with content or
its intended meaning. Original content could be removed and
semantically unrelated content inserted to replace it without
changing the markup at all; pre-existing position-based frag-
ment identifiers would then identify the new unrelated con-
tent. This is not different from standard fragment identifiers
that name the ‘id’ attribute of an HTML element pre-inserted
for the purpose of identifying a position in the markup. While
typically meaningful in practice, there is no requirement that
id names used in standard fragment identifiers be meaningful.
A web page can be reorganized as described above, and a
fragment identifier can be reused to identify content unrelated
to the previous content. Use of that internal ‘id’ attribute as a
fragment identifier would have the same disadvantage as
position-based fragment identifiers. From this we see that
fragment identifiers have been intended, for the most part, as
extensions of the basic URI philosophy of an ‘address’, where
the content at a particular address can change at any time.

A reasonable question naturally arises: if the URI preced-
ing the hash (‘#’) has these changeable characteristics, what
additional harm is done if a fragment identifier after the hash
also has this issue? Asked differently, given that URIs pre-
ceding fragment identifiers have this issue, what good can be
done by fragment identifiers that do not have this issue? In
part this question is answered by Hellmann-[.ehmann-Auer;
they show that in general fragment identifiers contribute sig-
nificantly to linkrot but content-based fragment identifiers
contribute far less.

The answer from the broad Internet and XML communities
has been that there is no compelling benefit. For example,
passing interest in an aspect of this problem was seen in the
1999 requirements statement from the XPointer specifica-
tion. It allowed the optional ability to determine whether an
XPointer still pointed at the “same target” as when it was
created, and pointed out that a checksum would work for this.
The W3C XPointer requirements document “XMI, XPointer
Requirements Version 1.0”, contained in the file TR/NOTE-
xptr-req, found on the web site www.w3.org, states:

‘It must be possible, but not mandatory, to create XPointers
that can be tested for whether they identify “the same”
target when followed as they did when created.

For example, this may be accomplished by providing a
checksum of the destination data. This massively
improves robustness because you can detect when a link
has broken (although it cannot prevent link breakage
from ever happening). [There is no consensus on
whether this requirement should be addressed within
XPointer or XLink].”

It isn’t clear whether the “same target” meant content or
content plus markup together, because there is still no speci-
fication, and responsibility for creating such a specification
has been passed from one group to another as well as post-
poned.

The lack of interest may be consequent to the fact that no
one seems to know what useful action the browser might have
taken if it detected a change. If there is nothing useful to do,
it does not improve the user experience. The requirement
documents do not help with this; there is apparently no docu-
mentation providing insight as to what a browser might have
done.

This lack of interest occurred even when it became clear
that something is wrong. For example, the XPointer imple-
mentation itself was inadvertently crippled in the popular
Mozilla Firefox browser implementation during a code reor-
ganization, which occurred years before the loss was first

10

15

20

25

30

40

45

50

55

60

10

noticed, in 2011. When finally noticed, it was observed that
either no one knew or no one who had known cared enough to
mention that XPointer had been absent for years. This con-
tributed to a decision to formally eliminate it from the code
base. These events occurred even though the XML commu-
nity has been sufficiently exercised about XPointer to care-
fully write specifications and books about it. It appears that at
least some in the XML community thought that XPointer
would have contributed to the uptake of XML and the conse-
quent obsolescence of HTML, leading to unification in XML.
The contrast between expectations and outcomes could not be
greater. This long-standing experience would tend to support
notions that a central focus of XPointer (e.g., positioning via
markup) is suboptimal, the problem addressed by XPointer is
a sideshow to the real problem, or there was no real problem
to be addressed in the first place.

After years of inaction by the mainstream, Hellmann-Le-
hmann-Auer appeared out of the natural language processing
community, with central issues being robustness of the links
and general applicability (i.e., not limited to just XML,
HTML, or any other single document format). At least some
in that community believe that the web needs something
better than XPointer. If precisely targeted cross-document
externally-generated links are so hard to understand, uninter-
esting, unreliable, unusable, fragile, long, or whatever the
right descriptive combination is for whatever causes the wider
communities of HTML, XML, PDF, and DOC file authors to
be unable or unwilling to use them, then the practical means
available to achieve the precision envisioned in broader
notions of a semantic web do not include means for exter-
nally-generated precise links to specific information within a
document. While such means are effectively absent, it may be
reasonable to ask if effective organic evolution towards the
more ambitious notions of a semantic web is possible.

As described in Hellmann-I.ehmann-Auer, and abridged
here mainly by shortening, the now abandoned LiveURLs
project was a Firefox plugin that has content-based means to
produce string identifiers. The string identifiers are in turn
appended to URIs as fragment identifiers. The user can select
text in a browser and the plugin creates the URL with the
corresponding fragment. The URI can be shared and the
referenced string is highlighted by a browser equipped with
the plugin when it opens the URI. The content-based frag-
ment has a format of sS1+c, where s is the length of the starting
word of the selection, S is the starting word of the selection, 1
is the length of the total selection, + is a delimiter, and ¢ is the
selection checksum. This scheme does not provide unique-
ness; in many natural circumstances it does not unambigu-
ously identify a particular instance of a string that is repeated
elsewhere in the document. In particular, as target strings
grow shorter it becomes more likely they will be unintention-
ally repeated. Moreover, any length string may be intention-
ally repeated any number of times.

Note that LiveURLs’ content-based fragment identifiers
have the significant benefit of not growing proportionately
with the length of either the selected text or the document.
Since the length of the selected text is encoded, the fragment
identifier formally grows logarithmically to the size of the
selection, which effectively matches the minimum space
requirements of a position-based fragment identifier. Such
logarithmic growth leaves it well within URI length limits for
practical web pages and usefully-sized target documents.

Hellmann-[.ehmann-Auer advances the art by providing a
new scheme for identification of arbitrary content that the
authors call ‘Context-Hash-based URIs’. The fragment iden-
tifier of that scheme contains 5 elements described in the
following quote:

US 9,356,574 B2

11

“Context-hash-based URIs are constructed from five parts
separated by an underscore ‘_’:

1. a scheme identifier, in this case the string ‘hash’,

2. the context length (number of characters to the left and
right used in the message for the hash-digest),

3. the overall length of the addressed string,

4. the message digest, a 32-character hexadecimal MD5
hash created from the string and the context. The mes-
sage M consists of a certain number C of characters (see
2. context length above) to the left of the string, a bracket
‘(, the string itself, another bracket)’ and C characters
to the right of the string: ‘left-Context(String)rightCon-
text’

5. ahuman readable part, the first 20 (or less, if the string is
shorter) characters of the addressed string, urlencoded.”

In both LiveURLSs and Context-Hash-based URIs, a short
portion of the target string is included in the fragment iden-
tifier. This can be said to help users understand the fragment
identifier, but it also limits the number of places in the docu-
ment that could match, which in turn beneficially limits the
number of hash function calculations that must be made in
searching for the full match. In both of these schemes, in order
to find the targeted fragment, for efficiency reasons it is nec-
essary to search for those positions that match the short
included string, and then calculate the hash only at the posi-
tion of each such match. The procedure given in Hellmann-
Lehmann-Auer to ensure uniqueness of the hash within the
document does not in fact achieve uniqueness for the matched
string; i.e., in some circumstances more than one string may
match the fragment identifier. Nevertheless, the basic idea
expressed in the prose is to grow the context on each side of
the target string equally by one character at a time until the
whole of the string is unique in the document; in other words
until the prefix, targeted fragment, and suffix concatenated
together is unique. The context length is then encoded in the
fragment identifier. A disadvantage of this scheme is that it
either becomes undefined or fails to achieve uniqueness when
the prefix or suffix grows to the beginning or end of the
document but, due to the non-uniqueness, additional growth
on each side is required.

There are circumstances other than when opening a URI
with a fragment identifier, where users are provided with a
selective or modified display of documents. In some circum-
stances, Google assists the user in locating occurrences of the
search terms by modifying the selected document’s presen-
tation based on the user’s search criteria. The user types a set
of'terms in a Google search window and Google returns a set
of possible documents with chosen document content (typi-
cally titles) as hyperlinks. The user clicks on one of the
hyperlinks to select a document. In the subsequent presenta-
tion, all occurrences of the user’s search terms are high-
lighted. At the time of writing, the Google patent search
engine presents documents in this manner. This behavior for
patent searches is the state of the art for providing additional
user assistance wherein the presentation of target documents
is modified to reflect prior user interactions with a search
engine.

Multiple existing search engines present snippets from
selected documents as part of their search results. The snip-
pets give the user additional information about the relevance
of a particular search result by providing him with short
strings (snippets) that are typically document content, and are
often taken from what appears to the search engine to be the
part of the document most relevant to the search criteria.
Google and other search engines have extended this snippet
concept to include content taken from non-displaying markup
embedded in the HTML; this markup is actually meta-data

40

45

12

that identifies different kinds of information to computers, so
that a computer can categorize it and associate it with other
data. This capability is a feature of the “semantic web”. For
example, the snippets for a particular commercial product
could include a product name, availability, price, etc. that are
taken from the document’s markup and formatted for display
according to the “rich snippet” format. The additional markup
uses one of three standard formats; these implement a univer-
sal schema and provide a kind of template with slots that can
be filled in with data. This information is presented to the
search engine along with the associated schema information.
It is displayed without the markup which would be confusing
for human readers.

Whether the snippets are only generated by text matching
schemes, or are also based on semantic information embed-
ded in the markup as is done for “rich snippets”, the content is
presented to the user in order to help him determine if he is
interested in that particular document. If he is, then he clicks
the hyperlink having a URI to that document.

According to RFC 3986, browsers do not send fragment
identifiers to the server with the rest of the URI. However,
modern browsers have changed from tools that just showed
content to tools that do things, and the fragment identifier has
evolved into a different kind of tool as well. It is used for a
wider range of things having nothing to do with the original
intent. For example, the content of a fragment identifier may
easily be sent to the server by web page scripts, as is done by
a great many web sites today. This circumvents the original
prohibition against web servers seeing that part of a URIL.
Now the server may download a script that obtains the frag-
ment identifier for a page and sends it back to the server. The
fragment identifier may then determine what content will be
downloaded by the server. Moreover, a specific intent of RFC
3086, the ability of users to identify content of documents
without the source of the document (i.e., the server providing
the document in the case of HTML over the Internet) having
an opportunity to interfere, has been thwarted.

Of particular interest is the provision of RFC 3986 that
makes ‘# a reserved delimiter and precludes it from appear-
ing in the fragment identifier itself. Since the fragment iden-
tifier portion of a URI cannot have a second ‘#’, a URI cannot
have multiple fragment identifiers. Thus, if a fragment iden-
tifier is used to modify the actual downloaded content (as is
commonly done now via scripts on a browser), the syntactic
position for a fragment identifier has been taken and there can
be no second fragment identifier to serve the original pur-
poses as specified in RFC 3986. This syntactic provision of
RFC 3986 is now regularly ignored, but not without conse-
quences. A presentation of several relevant points is found in
a W3C Internet document titled “Repurposing the Hash Sign
for the New Web”, which discusses the widespread violation
of RFC 3986 and explores some issues not discussed here.

The repurposing of the fragment identifier to change the
displayed content has interfered with aspects of the Internet
as a searchable information platform, which has in turn lead
to further repurposing. For example, in response to deleteri-
ous effects on the quality of web searches from these
unplanned organic changes in usage, Google created and
publicly specified the ‘#!” (hashbang) delimiter syntax as an
extension of the ‘#” URI delimiter. Hashbang semantics allow
web servers to provide Google and other search engines with
what is effectively a separate promise of what users will see
when they open some URIs. This differs from prior search
engine indexing behavior, which looked at web page content
as it would have downloaded to a user agent, with no further
processing.

US 9,356,574 B2

13

The use of the hashbang facility creates a new problem for
search engines; the promised content may not be what a user
actually sees. Such inaccuracy could arise from many causes
ranging from malicious manipulation of search engines to
benign temporary database inconsistencies. With modern
web browser and server behavior, particularly with web pages
that use scripts to identify and dynamically download further
content, the only means to verify the accuracy of such a
promise is to open the web document in a browser environ-
ment and allow its scripts to run. This is costly for search
engines; Google created the hashbang facility in part to avoid
the inefficiency of running scripts. If Google were to verify
every such promise by running web page scripts in a browser
environment, then there is essentially no point in the hash-
bang facility since such verification could accurately index
documents.

The ad-hoc Google hashbang ‘specification’ allows addi-
tional appearances of the hash (‘#’) character to follow a
hashbang (‘#!”). Even if Google and other search engines
were to download every document into a browser environ-
ment and run its scripts in order to index the content, allowing
multiple hash delimiters would remain a practical necessity.
While doing so violates the syntax requirements of RFC
3086, it permits appending true fragment identifiers (frag-
ment identifiers that are used according to the semantics of
RFC3986) to any UR], including those that may already have
one or more hash delimited ‘fragment identifiers’ serving
other purposes. This allows some of the intent of RFC 3986 to
survive while sacrificing one of its constraints. Given this
situation, use of multiple ‘fragment identifiers’ syntactically
delimited by multiple hashes ‘#’ is not in effect a violation of
the specification.

FIG. 1 illustrates a prior art process 100 that uses hash
functions in fragment identifier schemes such as Hellmann-
Lehmann-Auer and LiveURLs. The substring appearing in
the fragment identifier is searched 101 by standard text
matching algorithms across the document to find any
matches. If there are 105 such text matches, then starting at
each match the hash function of the scheme (e.g., MDS for
Hellmann-[.ehmann-Auer) is calculated 120 over the length
of the target fragment (the length is known because it is
encoded in the fragment identifier). If the calculated hash
matches 125 with the hash value from the fragment identifier,
then that match is construed 130 to be an identified fragment
of the document; as such it is further processed 108.

Several embodiments of the described technology are pre-
sented in detail in reference to the Figures. The computing
devices on which the described technology may be imple-
mented may include one or more central processing units,
memory, input devices (e.g., keyboard and pointing devices),
output devices (e.g., display devices), storage devices (e.g.,
disk drives), and network devices (e.g., network interfaces).
The memory and storage devices are computer-readable stor-
age media, e.g., storage media that are non-transitory, that
may store instructions that implement at least portions of the
described technology. In addition, the data structures and
message structures may be stored or transmitted via a data
transmission medium, such as a signal on a communications
link. Various communications links may be used, such as the
Internet, a local area network, a wide area network, or a
point-to-point dial-up connection.

For this description, the capitalized term ‘Fragment Iden-
tifier’ applies to URI fragment identifier created according to
these embodiments, although ‘of an embodiment’ or words to
that effect may also appear. If a Fragment Identifier is
appended to a URI, thus creating a URI with a Fragment
Identifier (of an embodiment), then for brevity we may call

10

15

20

25

30

35

40

45

50

55

60

65

14

that URI a ‘Fragment URI’. Similarly, a hyperlink that com-
prises a Fragment URI (of an embodiment) is termed here a
‘Fragment Hyperlink’. To refer to fragment identifier that are
not of an embodiment, we use the term ‘Conventional Frag-
ment Identifier’.

Some embodiments utilize a rolling hash function to filter
potential matches for further checking with a primary hash
function. Also, some embodiments use a rolling hash function
to find matches solely on the basis of rolling hash function
matches, i.e., without further checking of matches by subse-
quent use of a conventional hash function.

FIG. 2 illustrates the calculation 200 of a rolling hash
whereby n-gram hashes are calculated across a document to
find potential matches and to calculate the number of bits
required to distinguish between substrings of the document
and the match string. For the purpose of finding the number of
bits required, all the hash bits are used. For such calculations
the number of bits passed in the input is all of them, which in
some implementations is 64 bits. In the transmission of Frag-
ment Identifiers and subsequent searches for fragments iden-
tified, the number ofbits used is generally much fewer than 64
and is calculated as described below.

The rolling hash calculation 200 requires 205 inputs of an
array of code units, the length n of a match string, the value of
the rolling hash function <DistHash> over the n-length match
string, the number of high order hash bits used <bitCount>,
and optionally the match string itself. Note that the match
string itself is not available when searching for a match for a
Fragment Identifier, but is available when calculating the
number of hash bits required to distinguish the fragment. The
mask <bitMask> is set to have the high-order <bitCount> of
bits set to 1 and the rest of the bits are set to zero. By bitwise
and operation with <bitMask> only the <bitCount> high
order bits of the output of the rolling hash function are
retained and hence only those bits are compared.

Inthese examples and in some implementations, the length
nis in 16-bit code units. Note that a 16-bit code unit is always
16 bits, even though a UTF-16 character may use two 16-bit
code units. This does not mean that a match string would ever
beneficially stop or start between the code units of a character,
which should be avoided where possible. Thus n is not in
general the number of characters but instead may be a larger
number, and can be up to twice the count of characters.
UTF-16 was designed with the intent that few documents in
any language would need to utilize Unicode characters out-
side the UTF-16 Basic Multilingual Plane (BMP), and thus
most have no characters longer than 16-bits; so for example
this distinction has no effect on the vast majority of docu-
ments encountered by browsing the Internet, including those
having Chinese, Japanese, and Korean. Nevertheless, some
embodiments are applicable to documents having characters
outside the BMP, and this distinction becomes important to
realize some speed benefits of such embodiments. Alternative
embodiments comprise checking every character to deter-
mine if it might be longer than 16 bits, and dealing with
n-gram hashes where n applies to characters not having a
fixed size of 16 bits, but it entails costly checking of condi-
tionals in the inner-loops of rolling hash calculations and
more space is required in the hash tables. This additional cost
is high enough that embodiments that convert characters to
the 32 bit fixed-length Unicode as a pre-processing step pro-
vide benefits over those embodiments. The conversion
requires computation time and generally double the space and
time used to calculate the hashes. However, according to
some embodiments the benefits are realized without such
conversion. Nevertheless, while efficiency could be nega-
tively affected, those skilled in the art will appreciate that any

US 9,356,574 B2

15

character encoding may be used without departing from the
teachings of this specification, including the use of n as the
number of characters as opposed to code units.

Initially 210 the number of rolling hash matches is set to
zero and an empty array is created to store the indices of any
matches found. An unsigned integer <LeastUnequalMatch>
is large enough to store the hash output. In a rolling hash pass
over the document it will always have the smallest value of a
bitwise exclusive-or-based comparison between the hash to
match (<DistHash>) and the n-gram hashes of the document.
It is set initially 215 to the largest value possible from the
comparison. The first n characters of the document become
220 the current n-gram and the rolling hash h is calculated
over the current n-gram with the result placed in the variable
<curNgHash>. The position <indexNGram> of the first
16-bit code unit of the current n-gram in the document array
is initially set to zero, which indicates the first code unit of the
document, where the document is interpreted as an array of
code units.

The rolling hash loop begins 225 by calculating the bitwise
exclusive-or (XOR) between the current n-gram hash and the
hash to match, then masking it by bitwise AND with the bit
mask. The result is placed in the variable <cdh>. Le.,

<cdh>=(<curNgHash> XOR <DistHash>) AND <bit-

Mask>
Ifthe value of <cdh> is zero 230, then the match hash (<Dis-
tHash>) is the same as the current n-gram hash; however, if
the match string itself is also available 232, then we compare
the match string directly 233 to the current n-gram. If the
strings are identical or if the match string is unavailable, then
the <countMatches> position of array <arrayMatches> is set
235 to the position <indexNGram> of the current n-gram. L.e.,
<arrayMatches>[<countMatches>]=<indexNGram>

The number of matches, <countMatches>, is incremented.

In some embodiments, the direct match string comparison
is not used on the basis that it is probabilistically unlikely that
hash values of 64 bits or more would be the same for two
different strings. Moreover, a decision to rely only on the hash
can be based on easily meeting any required level of confi-
dence; the probability of error drops exponentially as the
number of bits in the hash increases. So with sufficiently
many bits in the hash any desired level of confidence can be
achieved. If higher confidence is desired then embodiments
having 128, 256, or more bits from the hash function can be
used.

If the value of <cdh> is not zero 230 or if the string com-
parison 233 fails, the match string differs from the current
n-gram. In this case we check 245 to see if <cdh> is less than
<LeastUnequalMatch>; if so then <LeastUnequalMatch> is
set 250 to the value of <cdh>.

If there is more of the document following the current
n-gram 240, then the rolling hash function value <curNg-
Hash> is updated 255 to the hash of the next n-gram, which is
the n-gram to the right in the document by one 16 bit code unit
(one code unit is added to the end, and one removed from the
beginning), and then the loop 225 begins again. The calcula-
tion of one beneficial rolling hash function is described in
detail below.

If there are no more code units in the document to process
240, then the return value <requiredBits> is set 260 to the
number of contiguous 0-valued high-order bits in the value of
<LeastUnequalMatch>, plus 1. However, <requiredBits> is
not allowed to be greater than the number of bits in the hash.
One is added to ensure that at least one bit will be non-zero on
any comparison of the match string’s hash with any non-

10

15

20

25

30

35

40

45

50

55

60

65

16

matching n-gram hash from the document. The values
<requiredBits>, <countMatches>, and <arrayMatches> are
returned 265.

Embodiments that calculate the number of bits required,
and also do not require content substrings in the Fragment
Identifiers, have a significant space advantage over existing
content hash-based fragment identifier schemes. In not cal-
culating how many bits are required, those schemes have no
reliable choice but to use more bits than are in fact required.
For example, Hellmann-L.ehmann-Auer encodes the full
MDS5 complement of 128 hash bits into their fragment iden-
tifier as well as the partial substring. Because some embodi-
ments limit the number of bits used by such precise means,
and do not require either substrings or some other hash value
from the Fragment Identifier to limit the number of expensive
hash calculations, those embodiments save large amounts of
space in Fragment Identifiers and hence URIs. It therefore
becomes reasonable to use multiple hash values in a single
Fragment Identifier while at the same time guaranteeing
uniqueness where needed. Note that hash value uniqueness
does not imply that a distinguished string is not duplicated as
duplications occur arbitrarily in documents; it implies only
that strings that are actually different have different hash
values.

This rolling hash function is a modified form of the fully
randomized rolling hash family called GENERAL by
Lemire-Kaser. While Lemire-Kaser references Cohen as a
precursor of the fully randomized GENERAL hash function,
careful study of both papers reveals that the computation
methods given by Cohen for his early version of GENERAL
can be applied to the fully randomized version of GENERAL
described in Lemire-Kaser; continuing the study also reveals
that the resulting computation is asymptotically superior in
time, space, or both to the implementations of Lemire-Kaser.
In fact, the resulting implementation provides both pairwise-
independence and the fastest computation amongst all of the
rolling hash functions studied by Lemire-Kaser, including
Karp-Rabin.

The GENERAL family also has advantages because it can
be implemented with high efficiency for arbitrarily many
output bits, which is not true of any other rolling hash function
studied by Lemire-Kaser. For the other rolling hash functions,
increasing the number of output bits increases the computa-
tional costs disproportionally. As noted in the introduction,
Lemire-Kaser demonstrated by way of mathematical proof
that the fully randomized GENERAL family has the highest
theoretical quality of bits possible for any rolling hash func-
tion, i.e., pairwise independence. This is a high standard; for
example, cryptographic hash function families such as
SHA-1 and SHA-2 are not known to have pairwise indepen-
dence or related pairwise independent constructions.

This version of GENERAL produces 64 pairwise indepen-
dent hash bits in its output, but the number 64 is only chosen
because it provides a sufficient level of confidence; those
skilled in the art will appreciate that arbitrarily wide versions
such as 128 bits, 256 bits, or even wider for GENERAL could
be used. Wider versions would have a small additional com-
putation cost when implemented on modern processors hav-
ing SIMD (Single Instruction Multiple Data Path) registers
and instruction sets. Because we calculate the number of hash
bits actually required in Fragment Identifiers and thereby
limit them, use of such wider versions of GENERAL would
on average have no effect on the size of Fragment Identifiers
created by such embodiments.

A particular 64-bit GENERAL family hash function was
chosen by picking an irreducible polynomial, an initial value,
and obtaining 4 kilobytes of true random (real entropy as

US 9,356,574 B2

17

opposed to pseudo-random) bits, which fills an array of 256
entries with 64 random bits each. This procedure for comput-
ing GENERAL is closer to that of Cohen because of its
performance. This hash uses 8-bit symbols as input. In some
implementations UTF-16 Unicode strings are hashed by
repeated application of the function GENERAL for 8 bits of
the encoding at a time; in the example implementation of this
specification it is performed twice to align with a 16-bit
Unicode code unit symbol.

Thus this example shows how to consume a piece of a
symbol at a time and have smaller tables. The example imple-
mentation uses 16 bit symbols by consuming 8 bits at a time,
which beneficially reduces the size of the tables. However,
implementations that consume 4 bits at a time for 8 bit sym-
bols, 4 bits at a time for 64 bit symbols, or 8 bits at a time for
8 bit symbols are all possible and analogous; those skilled in
the art will appreciate that both larger and smaller symbols
and larger and smaller sizes consumed at a time can be con-
structed according to these teachings.

Modifications to GENERAL used by some embodiments
include an arbitrary initial value of the hash, which in both
Cohen and Lemire-Kaser is fixed at 0. Here a randomly cho-
sen value is used instead of 0. This random initial value
becomes the ‘hash’ of a zero length string, which adds to the
probabilistic insurance that different length strings will have
different hash values, regardless of the random values
assigned to individual symbols. While this non-zero initial
value mathematically complicates GENERAL as a function,
the effect on computation cost can be limited to a slight
increase in the cost of building the hash tables. This aspect of
this embodiment adds nothing to the computation cost in time
or space once the modified tables are constructed. The fol-
lowing describes the modified version of GENERAL for 64
bits.

GENERAL family hash functions are each based on an
irreducible polynomial, and for each width in bits there are
different possible irreducible polynomials. One such polyno-
mial for 64 bit width is the ECMA-182 standard polynomial,
as described in “Standard ECMA-182. Data Interchange on
12.7 mm 48-Track Magnetic Tape Cartridges—DLT1 For-
mat”. It is represented most commonly in 64 bits (0-63) as the
encoding 42FOE1 EBA9EA3693, with the highest order (or-
der 64) bit set to 1. According to industry practice the high
order bit is not present in such an encoding; we let p stand for
this encoding in the procedures that follow. In full polynomial
form the ECMA-182 polynomial is written:

X2 PO O3 2 e x Pax 404
x30x 3 x 3 0x B 323 P e Ty
2322 O a3 2 10 e Tt
x+1

In the procedural descriptions that follow, the symbol pair
‘<< stands for “left shift the left operand by the number of
bits of the right operand, the shifted bits on the right are filled
in with zeros”. The leftmost bit or bits are shifted out and lost
from 64 bit operands. The symbol pair “>>’ stands for “right
shift the left operand by the number of bits of the right oper-
and, the bits shifted out are lost and zeros are shifted in”. The
symbol ‘&’ stands for the “bitwise logical AND operator
between the operand to the left and the operand to the right”.
The symbol pair ‘<-’ means “assign the right operand value to
the left operand”. The symbols ‘Ox’ precede a literal integer
given in hexadecimal; thus ‘0x{f” is a sequence of 8 low-order
binary bits of all ones and ‘(c[j] & 0xff)’ gives the low order
8 bits of'the value of the array c at position j. The symbol triple
‘XOR’is the bitwise exclusive-or operator, the operand on the
right is bitwise exclusive-or combined with the operand on
the left. Note again that we process code units of 16 bits.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

The rolling GENERAL family computation with initial
state set to an arbitrary value requires an initial value w, a
mapping (table) h, from 8-bit values to random 64-bit values;
a table t with 64-bit entries previously built according to the
function Buildtable below, and a 2-entry table r that holds 0
and the lower 64 bits of the polynomial (p).

1: input: array ¢ of UTF-16 16-bit code units

: input: 64 bit initial hash value w

X<-W

: for each integer j starting at 0 to n-1 do

: X<-(x<<1) XOR 1[x>>63] XOR h,[c[j] & Oxff]

: X<-(x<<1) XOR 1[x>>63] XOR h,[c[j|>>8]

end for

:yield x // i.e., further process this first n-gram hash

: for each integer j starting at n to the end of data do

: x<-(x<<1) XOR r[x>>63] XOR h, [c[j] & 0xff] XOR t[c

[j-n]& Oxft]

9: x<-(x<<1) XOR r[x>>63] XOR h,[c[j]>>8] XOR t[c[j-n]
>>8]

10: yield x // i.e., further process the n-gram hash x

11: end for

Buildtable: The function Buildtable builds tables t and r
using the function Shift. Note that Shift”(w) represents the
result of repeatedly applying the shift function to w, n times,
using the result of each application of the shift function as
input to the next one.

: input: 64 bit initial hash value w

: input: the mapping h,

: input: 64 bit representation of the polynomial, p
: input: the number of code units n in an n-gram

1
2
3
4
5: q<-Shift>"*!(w) XOR Shift*” (w) //q is a 64-bit integer
6
7
8
9
1

0N LU R LN

: for each 8-bit integer y do
: fly]<-Shift**(h, [y]) XOR q
: end for
1 r[0]<-0
0: r[1]<-p
Shift: The function Shift requires the irreducible polyno-
mial of degree 64 described above represented by the encod-
ing of its lower 64 bits as described above, as p.
1: input: 64-bit integer x
2: input: 64 bit representation of the polynomial, p
3: x'<-x<<1; // x is shifted left one bit to yield x', the leftmost

(high order) bit of x does not appear in x'

4: if (x>>63) // i.e., if leftmost or highest order bit of x is 1,
then

5:x'<x' XOR p

6: end if

7: return x'

The table r has only two entries and holds the values 0 and
the polynomial p, which for performance reasons beneficially
avoids a costly conditional branch in the inner loop. It is
costly because a CPU cannot predict this particular branch
based on the past behavior at this conditional branch. This
inefficiency occurs in both the Cohen and Lemire-Kaser pro-
cedures for GENERAL. Such a two entry table will nearly
always be in the level 1 cache of modern processors and the
lookup is extremely fast. On the latest modern processors
such an access is one cycle, the same time taken to access a
CPU register.

FIG. 3 illustrates the use of the n-gram rolling hash 200 of
FIG. 2 to filter matches 305 for Fragment Identifiers, and then
using a primary standard hash-based comparison 310 to find
all fragments that have content matching the “target string”
(i.e., the string to be matched). A benefit of this mechanism is
that there is no substring used to pre-qualify positions for the
application of the primary hash function. The Fragment Iden-
tifier instead contains some bits of a rolling hash function,

US 9,356,574 B2

19

beneficially calculated over the entire target string, to elimi-
nate most non-matching strings in a document.

FIG. 4 illustrates the use of the n-gram rolling hash 200 of
FIG. 2 to perform the entire matching operation 405. In this
operation, enough high-quality rolling hash function bits are
used to match the string accurately within the document. In
some embodiments, the number of bits used is encoded in the
Fragment Identifier in order to make the Fragment Identifier
short; a maximum of 64 bits is considered sufficient for this
purpose but any larger maximum value could be used with the
same effect on Fragment Identifiers. Also, smaller numbers of
bits could be used most of the time without deleterious
effects, but with increasing likelihood of difficulties as the
number is lowered. With this space savings, embodiments as
presented below can reasonably use more than one hash value
in Fragment Identifiers.

One goal is to create robustness of links. Robustness is
desirable against at least the following kinds of modifications:
1. Changes to the document outside the targeted information.
2. Changes within the targeted information that do not or that

likely do not affect its semantics.

Note that if a benefit can be realized both by language-
unaware means and language-aware means, then it is reason-
able to determine if the language-unaware means provides
additional computational or software-development effi-
ciency. For example, if a benefit requires language-aware
means, then typically at least some development occurs sepa-
rately for each supported language. Thus, it is a goal to
achieve what can be achieved by language-unaware means,
and use language-aware means only where no efficient lan-
guage-unaware means can be found.

These goals are interpreted broadly. Changes outside the
targeted information include cutting and pasting the targeted
information into another document, conversion of a docu-
ment from one kind to another (e.g., from an HTML docu-
ment to a PDF, XHTML, DOC, or XML document), present-
ing a document using one software product rather than
another, adding to or removing extraneous information from
a document, and wholesale changes to the markup structure
of a document.

Language-unaware means cannot reliably deal with arbi-
trary meaning-preserving transformations such as transla-
tions between languages. Meaning is sometimes lost. This
fact results in the ubiquitous nature of the phrase “lost in
translation”. As with arbitrary meaning-preserving transfor-
mations, categorizing transformations according to whether
or not they preserve meaning also creates the opportunity for
loss of information. It is the intention in choosing an embodi-
ment to limit, insofar as is possible, such loss of information
to circumstances that are likely to have been contrived to
create such loss. This involves choices and judgment calls in
the achievement of multiple but conflicting desirable out-
comes:

all meaningless transformations should be seen as mean-

ingless,

all meaningful transformations should be seen as meaning-

ful, and

any computed transformations and uses made of trans-

formed documents should be computationally efficient.

It will be understood by those skilled in the art that such
choices and judgment calls could be made differently without
departing from these teachings. Moreover, experience may
refine the choices and judgments that determine a precise
embodiment or the best settings for its configurable elements.

Language-unaware implies that all languages are treated
identically as though they are collectively one language,
which in turn means that a character set that represents all

25

40

45

55

20

languages simultaneously is beneficially used. It also means
that content in one language does not generally match content
in another language, even though their meanings may be
identical. While any universal character set could be used,
there is a set of related standardized character sets, collec-
tively called Unicode, that have been created previously for
this purpose. Any character set that achieves such universality
could be mapped to any of these different Unicode character
sets. The world-wide-web utilizes more than one such Uni-
code character set, and HTML documents can declare their
character set representation at the beginning of the document.
Nevertheless, whatever representation the document is in
when transmitted or stored, some display engines (browsers)
convert the representation internally to the UTF-16 Unicode
variant. In this way all code accessing the document may be
written to that common variant. Therefore, for these reasons
and without loss of generality, from here onward we presume
either that a document is represented natively in UTF-16 or
has been translated to it.

Unicode characters are utilized non-uniformly from a
meaning perspective. In some circumstances, the use of two
different Unicode characters has the exact same effect on
meaning. Such characters may even appear identical to the
eye or only differ slightly in appearance. Examples of this are
the different forms of quotation marks having different Uni-
code character values. In other circumstances the intended
meaning can only be achieved by the use of a single unique
Unicode character and different appearance is of necessity
achieved in the presentation software by application of dif-
ferent presentation rules, such as use of a different font.

Different languages have different character sets and may
have characters that are similar in appearance while having
different Unicode values.

A basic unachievable but useful concept is to partition the
set of characters into equivalence classes, whereby replacing
any character with any other in its class is meaning neutral in
all circumstances. If many such classes existed with more
than one character in them, then a large number of meaning-
neutral transformations would naturally be defined by char-
acter substitutions. Moreover, a representative of each such
class could be used to replace the other members to arrive at
a canonical form for all Unicode documents. While useful to
describe theoretically, a partition with such perfect character-
istics does not exist. However, for purposes of identifying
related meaningful text, a key observation is that the ability to
transform a document into another related meaningful docu-
ment may be unnecessary. If two documents or parts of docu-
ments known to be meaningful can be efficiently transformed
into the same (not necessarily meaningful) document, and
this can only occur if the two original documents are likely
closely related in meaning, then this one-way transformation
can be used to associate text from one with the other.

Adding further complications are characters or character
sequences that, without altering meaning in any way, take the
place of other character sequences. Simple examples of this
are ligatures, such as the single character ligature or com-
bined form of “ae”, as it commonly appears in print form of
the name “Ceesar”. Unicode provides separate characters for
many such ligatures. It would be contrary to the goals if an
edit that changed the two-character sequence “ae” to its cor-
responding single-character ligature “e” were to cause a
Fragment Identifier to fail to identify its intended fragment. In
addition there are language constructs, abbreviations and
acronyms, which take the place of their longer forms without
altering meaning. Unlike ligatures, Unicode does not directly
support abbreviations and acronyms.

US 9,356,574 B2

21

Some embodiments transform the text to a canonical form.
Western language text in the in the example canonical forms
presented here are effectively unreadable, but two meaningful
uncontrived text documents or fragments that have the same
canonical form likely have the same or closely related mean-
ings. While an embodiment uses a particular transformation
or transformations, those skilled in the art will appreciate that
many useful transformations or canonical forms could
achieve similar benefits. A useful property of the example
transformation presented here is that it uniquely maps each
Unicode string to another string, which is its canonical form.
Ifitis a unique mapping, i.e., if it is a function in the technical
sense of the term ‘function’, then it usefully defines equiva-
lence classes of strings, including equivalence classes of
documents, with each class consisting of those strings that
map to a particular canonical form string.

The conversion to a canonical form first performs a full
case-folding operation according to the Unicode Consortium
specification, which converts to lower case and expands some
ligature-like characters that are not true ligatures, such as the
German sharp s, as well as several true ligatures in various
languages, such as English and Greek. Some embodiments
then expand the sequence of characters to a normalized form
that expands composite characters of various stripes and any
remaining Unicode compatibility ligatures. (Compatibility
normalization by expansion is defined by the Unicode con-
sortium.)

While an embodiment that expands both ligatures and
abbreviations is useful, such expansions might not be done
because of the tendency to require language awareness and
the additional computational complexity that such awareness
entails. However, in many contexts such expansions are use-
ful and act to further associate strings having identical mean-
ing. In other embodiments acronyms and abbreviations are
expanded in a first step to arrive at a canonical form. Formal
grammar style production rules to convert acronyms and
abbreviations to their expanded forms would be applied.

Some embodiments partition the universal character set
(plus an empty character, i.e., substitution in the class with the
empty ‘character’ means to remove all members of the class
entirely) into classes of characters, such that wherever a mem-
ber of a class appears in the corpus of existing and reasonably
expected future meaningful (uncontrived) documents, then
one of the following holds:

1. Inlikely actual usage, replacement with another member of
the class does not affect meaning.

2. In likely actual usage, meaningful replacement with
another member of the class is unlikely to occur without
that change occurring in conjunction with other changes
that both affect meaning and that are not intra-class substi-
tutions.

Such transformations do not preserve meaning and the
results might be meaningless. Nevertheless, in some embodi-
ments they define equivalence classes of characters, docu-
ments, and parts of documents. If two naturally occurring
(uncontrived) documents or parts of documents are in the
same equivalence class and are in fact meaningful, then they
are likely closely related in meaning if not identical. A simple
example of this involves collapsing all whitespace and punc-
tuation to the empty string (so whitespace and punctuation in
any unbroken sequence are in the equivalence class that trans-
forms to the empty string). It also converts all upper case
characters to their lower case form, so the upper case and
lower case character pairs are in the same equivalence class.
Once punctuation and whitespace are collapsed and upper
case letters are converted to lower case, the canonical form for
“Food For Thought:” is “foodforthought”. Because some far-

10

15

20

25

30

35

40

45

50

55

60

65

22

eastern languages rely less on whitespace, punctuation, and

capitalization to separate terms and establish meaning, a

canonical form for such languages can be more readable than

for European languages. However, this fact confers no sig-
nificant advantage since such a canonical form is generally
not interpreted by humans.

A canonical form can also expand Unicode characters that
have an expanded representation, such as those with diacriti-
cal marks, to a decomposed canonical form defined by the
Unicode consortium. Their two defined standard “compat-
ibility”” decompositions expand the Unicode defined ligatures
as well as separate accented characters into a canonical
sequence of characters that beneficially permits treatment of
the diacritical marks as separate combining characters. The
decomposition used in the example embodiment is the NFKD
(Normalized Form Compatibility Decomposition).

Some embodiments normalize the Unicode text to arrive at
a canonical form using the following steps:

1. Transform the text according to full case folding, which is
a mapping described by the Unicode Consortium as part of
the Unicode Standard version 6.2.0, in machine and human
readable form in the document Public/UNIDATA/Case-
Folding.txt, found on the Unicode.org web site. This
expands some ligatures and ligature-like forms, and con-
verts all characters that have case to lower case.

2. Transform the output of step 1 to the standard NFKD
(Normalized Form Compatibility Decomposition) form, as
described in the Unicode consortium’s “Unicode Standard
Annex #15: Unicode Normalization Forms” found in the
document reports/tr15, on the Unicode.org web site. This is
the standard normalization procedure that expands Uni-
code ligatures and decomposes various complex characters
to their base characters followed by combining characters.
It does not convert to lower case, which was done in step 1.

3. The non-starters (also called combining characters by the
Unicode Consortium) are removed. These include the
combining forms of diacritical marks, all of which were
separated out in step 2. The combining characters that are
removed are those that are marked “COMBINING” in the
Unicode Consortium file found in the document Public/
UNIDATA/UnicodeData.txt on the Unicode.org web site.

4. Whitespace and punctuation characters are removed. Spe-
cifically, the following Unicode code units and code unit
ranges are removed from the sequence: \u0000-\u002f,
\u0032-\u0040, \u005b-\u0060, \u007b-\u00bf, \w00d7,
\u00£7, \u055a, \ul1680, \ul80e, \u2000-\u206f, 2420,
\u2422, \Wu2423, \u3000, \u30lc, W3030, \ufe58, \ufe63,
\ufeff, \uffOd.

This procedure is called the “Canonical Form Transform™
or “Canonical Form Transformation”. Those skilled in the art
will appreciate that the same transformation may be achieved
by different rules applied in a different order, and also that
many different transformations will provide similarly useful
results.

In alternative embodiments, additional “ligature-like”
characters are expanded before the NFKD transformation is
performed. Ligature-like is determined by general practice in
real documents; for example, the Scandinavian and German
languages have ligature-like umlaut (also called dieresis or
diaeresis) vowels such as “0” in that they are often written,
especially in electronic communication, in an alternative
expanded character form. For example, the character “ii” is
often written in the alternative form “ue”. Unlike true liga-
tures and even if restricted to the languages in which they are
most used, the ligature-like “@” is not equivalent to “ue”;
while “ue” can be and is commonly substituted for “i”, “0”
cannot be substituted at will for “ue”. Nevertheless, as dis-

US 9,356,574 B2

23

cussed the canonical form is a one-way transformation that
does not preserve meaning, and first transforming “i” to “ue”
allows those appearances of “i” and “ue” that are made
equivalent by general usage to be recognized as equivalent in
the canonical form. A downside of such expansions is that in
general they are language-dependent because ligature-like
characters are not expanded uniformly across the various
languages in which they appear, and may not be ligature-like
in another language. For example, in French the word “aiglie”
has an alternative spelling “aiglie”, with the diacritic mark
indicating equivalently how the word is to be pronounced.
This equivalence is captured by dropping the diacritic mark
entirely, which is achieved in some embodiments in a lan-
guage-unaware manner. This usage in French is a dieresis,
and in German it is an umlaut, which are actually quite dif-
ferent but the difference is unknown programmatically with-
out first establishing the language; Unicode does not provide
different encodings for dieresis and umlaut—they are visu-
ally identical and have identical Unicode encodings. Know-
ing the difference is achieved by a language aware embodi-
ment. Alternative embodiments improve the behavior for one
language as compared with another—in other words lan-
guage-specific implementations. Other embodiments give
the user a choice of base language. For example, if the user
chose German the vowels with an umlaut would be expanded
as ligatures before the NFKD transformation. These alterna-
tives are implemented in embodiments.

In other embodiments, whitespace is not included in the
class that collapses to the empty string. Instead, contiguous
strings of whitespace collapse to a single space, so the
whitespace rules remain contractive but not entirely collaps-
ing. Ifa character between whitespace collapsed to the empty
string, then the two sections of whitespace would further
collapse to a single standard space, which requires repeated
application of production rules (if it is implemented using
production rules). While this transformation has the desirable
characteristic of preserving the separation between terms for
languages that use whitespace for that purpose (e.g., English
and other European languages), in experimentation it intro-
duced additional difficulties for Internet web page process-
ing. For example, browsers differently place whitespace in
the DOM (Document Object Model) where no such
whitespace existed in the source code (typically HTML) for
the page. Also, proper separation of terms in the created
canonical form becomes dependent on knowing when to add
whitespace because of implicit separation based on the
markup. Different commercial browsers do this differently.
For example, HTML allows the display of otherwise adjacent
terms (i.e., terms with no spaces between them) to be spatially
separated when displayed; if proper separation of terms is to
be achieved in such a case, a space is beneficially inserted
between the otherwise adjacent terms when creating the
canonical form.

Even the most popular existing search engines get this
wrong by concatenating such distinct terms when indexing
web pages, and in the process they create non-existent terms
that complicate and thwart searches for the actual terms. To
avoid some undesirable consequences of gratuitous concat-
enation of terms by search engines, it became useful for some
embodiments to concatenate all terms in the canonical forms
in part by the removal of white space. Difficulties in retaining
white space term separation were, with care, overcome for
some aspects of other embodiments and well-behaved imple-
mentations were achieved. However, even then some space
characters in the canonical form tended to depend on markup
structure and not only on the textual content. The practical
benefit of whitespace separation of terms was weighed

10

15

20

25

30

35

40

45

50

55

60

65

24

against the additional complexity and dependence on
markup, and total collapse of whitespace became the behav-
ior of some embodiments. Again, it is unnecessary for a
canonical form to be meaningful. If two uncontrived mean-
ingful documents or document parts having the same mean-
ingless canonical form are nevertheless likely to be closely
related in meaning, then that canonical form could benefi-
cially be used to establish the meaningful relationship
between the two documents.

In other embodiments, punctuation is separated into more
equivalence classes. For example, the different apostrophe
characters can form a useful equivalence class of characters
that are all mapped, in canonical forms, to the same member
of the class. This can be useful because such changes are
made in editing documents with no intention to change mean-
ing. Further, some popular search engines read in one such
character from a web page and translate it to another before
putting it in a search result. Such a gratuitous change could
eliminate an exact match in a search for content except that
the two characters are in the same equivalence class. Simi-
larly, it could be beneficial if the question mark *?” were not in
the same equivalence class as the period ‘.. The additional
complexity was weighed against the likelihood of making
matches between unrelated text, and the simpler implemen-
tation (where punctuation is collapsed) is used in some
embodiments.

The description of these embodiments assumes, without
loss of generality, that a document has an associated Docu-
ment Object Model (DOM) instance. All document formats
can be represented by a DOM, although not all are formally
associated with a DOM specification. For example, simple
text documents can trivially be placed in a DOM instance by
creating a single DOM node that holds all of the text, but there
is no formal DOM associated with simple text. Modern
browsers create a DOM for simple text documents when
displaying them. Modern display engines for complex docu-
ments such as Adobe reader generally use a DOM instance to
describe the document internally and most also have the
means to convert their documents to HTML.

The World Wide Web Consortium (W3C) standard Docu-
ment Object Model for HTML is used to describe these
embodiments. For example, in the W3C HTML standard
DOM, the notion of a ‘text’ node is defined and understood by
those skilled in the art. We therefore simply refer here to ‘text’
nodes. While described in the context of a particular DOM,
those skilled in the art will further recognize that the teachings
of this specification can be applied to any DOM model and
thence to any document in any language.

As is often the practice by those skilled in the art, for
brevity and clarity we will often refer to a DOM instance for
a particular document as simply the ‘DOM’; the particular
document or part of a document that is modeled in any par-
ticular instance is determined by context. This carries through
to parts of a DOM instance. For example, nodes of an instance
of 'a DOM for a particular document will be referred to as
nodes of the DOM and, where the DOM itself is clear from
context, they may be referred to as simply nodes.

The canonical form of some embodiments, as a transfor-
mation of Unicode strings as described above, is hereafter
written as the “Canonical Form”. This transforms one Uni-
code UTF-16 sequence (string) to another in only one way;
however, the Canonical Form Transformation of strings
extends to two different transformations of DOM instances.
DOM instances have nodes, and text is associated with those
nodes; a left to right traversal of those nodes, while concat-
enating “encountered text”, creates a string. There are two
different rules to determine what constitutes encountered

US 9,356,574 B2

25

text; determining which of the two sets of rules to use in the
Canonical Form Transformation of a DOM instance is based
on configuration and in some circumstances interactive user
input.

The text from standard text nodes (i.e., those nodes dis-
played to users as text) of an HTML DOM instance are
included by both sets of rules governing what constitutes
encountered text; standard text nodes are the only nodes
included for the DOM transformation thatis simply called the
“Canonical Form”. The other transformation includes non-
trivial text from the ‘alt’ attributes of the HTML DOM
instance’s image nodes; this DOM instance transformation is
called the “Alternative Canonical Form”.

These Canonical Form Transformations, as extended to
DOM instances, maintain positional relationships between
individual code units in the transformed string (the Canonical
Form string) and the input string in the context of a DOM
instance. When either a Canonical Form (resp. Alternative
Canonical Form) is created for a DOM instance, each code
unit in the Canonical Form (resp. Alternative Canonical
Form) is mapped to its corresponding DOM node and code
unit using a two member tuple consisting of the DOM node,
and code unit position within that node. Since some charac-
ters are collapsed, not all code units in the DOM are mapped
from the Canonical Form (resp. Alternative Canonical Form).
In contrast, ligature code units in the DOM are mapped from
multiple code units in the Canonical Form (resp. Alternative
Canonical Form). Because the Canonical Form and Alterna-
tive Canonical Form differ only in which nodes contribute to
the text string to be transformed, it is unnecessarily cumber-
some to repeatedly distinguish between the form that includes
alternative image text and the form that does not; therefore, in
circumstances that are unaffected by this distinction, they
may both be referred to as a “Canonical Form” or the
“Canonical Forms”.

An entire Text node may have no character mapped at all,
as all characters in a text node may have been collapsed in
constructing a Canonical Form. Because, in some embodi-
ments, each character is a member of an equivalence class,
even for simple 1-to-1 mappings the character mapped is in
general not the same in a Canonical Form. For example, upper
case characters ‘A’ are changed to lower case ‘a’in a Canoni-
cal Form.

Non-text document content is not mapped directly from a
Canonical Form; for example, images (except for any non-
trivial alternative text they might have) do not appear in a
Canonical Form. However, some DOM node types are des-
ignated to be members of a pre-determined class of nodes,
called Visible non-Text nodes (“VnT” nodes). While various
other node types could be included in this class, some
embodiments only include image nodes (‘img’ tag name in
HTML). Alternative embodiments may beneficially include
other node types; for example, multimedia nodes could be
included. For any embodiment, the pre-determined class of
visible non-text nodes is called the Visible non-Text (or VnT)
nodes of that embodiment. Note that “VnT” is sometimes
referred to as a class, but other places refer to it as a node type.
In either case it refers to nodes of the same class.

There is a separate canonical form that preserves separa-
tion of terms and comes the closest to preserving meaning; it
is the “Common DOM Form”. This form is suitable for index-
ing a search engine and producing strings for search criteria
(e.g., its terms are separated as in the original document). The
Common DOM Form (as a model) is a minimalistic DOM,
complete with DOM nodes, arranged in an array called a
“Common DOM Node Array”. An instance is by design self
contained, has as few nodes and node types as is practical, and

10

15

20

25

30

35

40

45

50

55

60

65

26

a compact representation. A Common DOM Node Array has
only three node types, two of which have associated text.
Because it is self contained (it has no external references) it
can be independently transmitted and stored.

As could be done beginning with any DOM instance, a
Canonical Form can be generated starting with a Common
DOM Form instance. When this happens, each of the code
units in it will individually be mapped, via anode and position
pair, to code units of the Common DOM Form.

Given an arbitrary instance of any DOM model, a corre-
sponding instance of the Common DOM Form can be gener-
ated. The Common DOM Form instance can be used, in
conjunction with the Canonical Forms, with techniques ofthe
present teaching to reproduce arbitrary pieces of the original
content in a form suitable for finding that and similar content.
For example, it can be used in searching for the content with
general Internet based search engines. Uses of this capability
include mitigating the ubiquitous loss of information across
public networks when links become stale and unusable.

The text of the Canonical Forms is used to locate specific
document content but, unlike the Common DOM Form, does
not preserve separation of terms. These, simply called the
“Canonical Forms”, remove whitespace and punctuation. The
first of these (the Canonical Form) only takes text from stan-
dard text nodes of a DOM instance. The second (the Alterna-
tive Canonical Form) behaves identically except that it also
includes alternative text used to describe images and (in alter-
native embodiments) other non-text nodes.

In some document description languages, such as HTML,
images are associated with a textual description. This textual
description is increasingly used in order to facilitate searches
as well as to provide accessibility for blind users. Neither
search engines nor the blind are effective at discerning the
content of images, so they both may use alternative associated
text if present. The content of these alternative (‘alt’)
attributes to image elements may appear in search results and
in some circumstances may be read or audibly processed by a
user agent and user. Moreover, sequences of images without
intervening visible text may best be represented by use of the
descriptive text in the ‘alt’ attributes. However, not all docu-
ment formats support these textual attributes for images, and
they are unseen when normally perusing a document that does
support them. Consequently, a straight conversion from one
document format to another could break a content-based frag-
ment identifier if it uses ‘alt’ attribute content. Also problem-
atical is that as usually unseen attributes, changes to them are
easy to make and usually go unnoticed.

Because of the goal that some embodiments should work
effectively across document formats as well as be robust to
meaningless changes, it is problematical to include ‘alt’
attribute image text. It is also problematical to not include it
since it may contain text that meaningfully identifies visual
content. Therefore some embodiments make the choice con-
figurable and, if so configured, it may be decided at the time
of Fragment Identifier creation. When the user chooses to
include ‘alt’ image attributes as text, if an image has an ‘alt’
attribute that is not empty and which does not collapse to all
whitespace or to the empty string during creation of the Alter-
native Canonical Form, then that image node is treated simi-
larly to the way a Text node is treated, and the text of that node
is the value of the ‘alt’ attribute. Since there is no effective
way for users to select part of the text found in “alt’ attributes,
either all the text is included in a selection or none of it is.
Such an image node is identified as aVnT node if it essentially
has no “alt’ attribute, and as a special type of node referred to
as an “Altnode” if it has a non-trivial ‘alt’ attribute. Individual
ranges in Fragment Identifiers that are created using ‘alt’

US 9,356,574 B2

27

attributes are identified as such by a Boolean. Interpreters of
Fragment Identifiers use the Boolean to know whether to treat
images with non-trivial ‘alt’ attributes as text nodes.

In some embodiments, a user can choose a configuration
option whereby he is given an interactive choice to include
‘alt’ image text each time such non-trivial (i.e., non-collaps-
ing) text is found within a selected range for which a Frag-
ment Identifier is being created interactively.

The Text and VnT nodes derived from a DOM instance are
arranged in an ordered set 510, or an array, in the left-to-right
order of their appearance in the DOM,; this is referred to as
either a node array or a derived node array. Nodes in the node
array have the same node types as are found in the Common
DOM Array. An object in the node array is identified as a node
(for VnT nodes and Alt nodes when treated as VnT nodes), or
a node and code unit (for Text and Alt nodes when treated as
Text nodes). For representational efficiency, the node and
code unit pair is sometimes abbreviated to a “code unit”, with
the associated node implied.

FIG. 5 illustrates a Canonical Form 550, a mapping 545 to
the code units and nodes of the array, a contiguous selection
or range 505 of the document, and three substrings of the
Canonical Form, prefix 565, target 570, and suffix 575, which
are used in identifying the selection. In this case all three are
unique in the Canonical Form. The prefix and suffix are
extended until they are either unique or the end of the Canoni-
cal Form is reached. The target is that part of the Canonical
Form having source that falls within the selection. Since the
character “d” appears only once in the Canonical Form, a
prefix length of 1 is unique. The suffix requires two characters
because the character “t” appears elsewhere. The triple of this
prefix, target, and suffix uniquely identifies the selection. In
fact, in this case, the target alone identifies the selection
unambiguously because the target is unique.

An offset table 580 indicates how far a selection extends
beyond the mapping of the target. For example, if the selec-
tion included the space after the “For”, then the prefix, target,
and suffix would be the same but the value of the right offset
588 would be 1 instead of 0. If the selection included the space
before the selected “For”, then the value of the left offset 587
would be -1 instead of 0. Since the selection does not extend
beyond text that is mapped from the target, the offsets 585,
586 are of type Text and their values 587,588 are zero.

FIGS. 6 through 9 further explore the relationship between
a selection and the internal data structures used. The ends of
the selection are mapped from the document DOM into the
node array. In addition, the last (rightmost) code unit of the
prefix, first (leftmost) code unit of the suffix and ends of the
target (also called the “Canonical Target”) are all mapped
from the Canonical Form to the node array. In FIGS. 6
through 9, these are referred to as the selection, prefix, suffix
and target or Canonical Target and may also denote either the
items in the Canonical Form or to their corresponding map-
pings in the node array. For example, when the term “target”
is not explicitly limited to either the target in the Canonical
Form or to its mapping in the node array, then its meaning is
determined by context.

FIG. 6 illustrates a Canonical Form 550 and mapping 545
with a selection 605 that defines non-unique target 665 text.
The selection does not extend past the ends of the target’s
mapping, so the offsets 687,688 are 0. While the target is not
unique, the triple of the prefix 660, target 665, and suftix 670
uniquely identify the position in the Canonical Form and
hence the selection.

FIG. 7 illustrates a Canonical Form mapping for a non-text
705 selection, which only contains VnT nodes 730,735. Non-
text selections are represented in part by a zero length

10

15

20

25

30

35

40

45

50

55

60

65

28

“Canonical Target” (the target string represented in the
Canonical Form) 765. When the Canonical Target has zero
length, the offset table’s entries 780 cannot be computed
relative to the ends of the Canonical Target; a zero length
string matches everywhere so there are multiple possible
positions from which to compute offsets. The selection’s
offsets in the node array could both be computed relative to
the last code unit of the prefix 760 and both could be com-
puted relative to the first code unit of the suffix 770. In
addition, the left offset could be computed relative to the
prefix and the right offset could be computed relative to the
suffix.

All three of these representations are used in different
circumstances, and the choice is made in favor of the offset
with the least absolute value. If a selection’s endpoint (either
right or left) is closer to the prefix than it is to the suffix
(‘closer” here means the absolute value of the resulting offset
is less), then the offset is zero or positive for that endpoint and
it is computed relative to the prefix. Otherwise the offset is
zero or negative, and the offset is computed relative to the
suffix.

Any selection endpoint has two possible objects from
which to compute offsets, one to the right of the endpoint and
the other to its left. A positive offset from an object to the
endpoint indicates that the endpoint is to the right of that
object, so the object is to the endpoint’s left. A negative offset
from an object to the endpoint indicates that the endpoint is to
the left of the object, so the object is to the endpoint’s right. In
this way, the sign of the offset indicates which object was used
to calculate the offset.

Occasionally the endpoint will coincide with one of the two
objects and an offset will be zero. For this to work consis-
tently with the above, there are two representations of zero, in
effect a positive zero and a negative zero. A positive zero
offset indicates that the endpoint is in the left position (from
which to calculate offsets) and a negative zero offset indicates
that the endpoint is in the right position (from which to cal-
culate offsets). Those skilled in the art will appreciate that
there are a multiplicity of means to have space-efficient rep-
resentations of integers that nevertheless have precisely two
representations of only the integer zero. Implementations of
this capability typically use either sign-magnitude or ones-
complement integer representations.

Some embodiments use sign-magnitude and thereby use
what is in effect a positive and negative zero. However, since
the ASN.1 encoding mentioned above does not natively sup-
port sign-magnitude or ones-compliment integers, in the
example implementation integers are represented as a Bool-
ean for the sign and an unsigned integer together to achieve a
sign-magnitude integer. This representation is used wherever
a signed integer is called for in an ASN.1 encoding.

For this selection 705, the last object in the selection is 735
a VnT node, so the type 786 of the right offset is “VnT’. The
count of VnT nodes to the right endpoint of the selection is
fewer from the suffix 740 than it is from the prefix 720.
Picking the potential offset having the lowest magnitude
gives an offset to the left (negative) from the suffix 740, with
a magnitude of 1; i.e., the right offset value is —1. When
counting, the last VnT node 735 of the array 510 is counted as
1 even though the count stops with that node.

For this selection 705, the first object in the selection is 730
a VnT node, so the type 785 of the left offset is also “VnT’.
The endpoint is the same count (2) in VnT nodes from the
suffix 740 as it is from the prefix 720. By default the positive
offset is chosen when both positive and negative offsets have
the same magnitude. This results in an offset to the right
(positive) from the prefix 720 with a magnitude of 2; i.e., the

US 9,356,574 B2

29

left offset value is 2. The VnT node adjacent to the selection
725 is counted as 1, then adding 1 for the selection’s first
endpoint node 730 makes it 2.

FIG. 8 illustrates a Canonical Form mapping with a single
node non-text selection 805 in the node array 510. Only one
node 725 is selected, so it is both the first and the last node in
the selection. Since the first (and also the last) node has type
VT, both offsets have type VnT 880. The offset with the least
magnitude is chosen for both the left and right offsets; each
offset has a value of 1 node to the right from the prefix 760,
which maps to a code unit of a node 720 of the node array.

FIG. 9 illustrates a Canonical Form mapping for a selection
905 having both text 915,920 and non-text 910 content. [t also
has a zero-length prefix 960. The last code unit of the Canoni-
cal Target 965 maps to the next to last code unit of a Text node
720, which is also the next to last code unit in the selection.
Therefore, the right offset has type text 986 and a value of 1
code unit 988. Since the leftmost object in the selection is a
VnT node, the left offset is in Vn'T 985 nodes. The nearest of
the two potential left objects is at the beginning of the Canoni-
cal Target, so the offset is calculated from the Canonical
Target and extends to the left; it has the value -1 987 (i.e., one
VnT node to the left). Therefore, the left offset has type VnT
and the right offset has type text 980.

When a prefix 960 has zero length, it maps to the left of the
node array’s first node 510; it can be convenient to have an
imaginary Text node having one imaginary code unit before
the first node of the array, to which a zero length prefix maps.
Similarly, when a suffix has zero length, it maps to the right of
the array’s last node; it can be convenient to have an imagi-
nary Text node having one imaginary code unit following the
array, to which a zero length suffix maps. Positioning of a zero
length prefix or suffix is especially critical if the Canonical
Target also has zero length, since offsets are based solely on
prefix and suffix positions in that circumstance.

These illustrations in FIGS. 5 through 9 represent a
Canonical Form that is created for the body of documents. For
HTML the title and the ‘META’ tag description of the docu-
ment are strings that may be displayed and used to represent
the document in various circumstances, and these strings may
also be found in searches by commercial search engines.
Therefore, they are included at the beginning of the node
array as special Text nodes, first the title and then the descrip-
tion nodes. They are always included even though they may
be empty. If not empty they thus appear in this order in the
Canonical Form of the document text and may be matched.
However, they do not participate in a document selection
since they are not part of the body.

In a Fragment Identifier based on the canonical mapping
described, the canonical prefix, target, and suffix are repre-
sented by a calculated number of high order bits of the hashes
for each of the three substrings. This greatly limits the space
taken up in a Fragment Identifier. As has been shown by
example, after building the canonical mapping these three
substrings and the offsets can unambiguously identify any
contiguous range or selection of a document consisting of text
and non-text nodes intermixed. Even for large documents, the
number of required bits calculated is probabilistically much
less in total for these three hash values than the full comple-
ment of 128 bits for a single MDS hash.

The goal of robustness against extraneous changes (i.e.,
changes outside the selection), should be examined against
the possibility of minimizing the number of hash bits too-
aggressively. Changes outside the selection and its unique
prefix and suffix context should not affect finding and posi-
tively identifying the originally intended selection or frag-
ment. However, if the number of bits in the hashes is kept to

10

15

20

25

30

35

40

45

50

55

60

65

30

the absolute minimum required in an unmodified document,
then an extraneous change could cause such limited hash bits
to match outside the intended selection. While itis possible to
create such n-gram hash matches by random changes to a
document, they will with reasonable probability not be cre-
ated for all three of the prefix, target, and suffix hashes.
Moreover, it is further very unlikely that they will be lined up
perfectly as sequential matches in the Canonical Form. Such
accidentally created matches will occur, if they occur at all, at
random locations in relationship to each other. Of course, it is
possible for the entire canonical sequence of prefix, target,
and suffix to be copied, but this would always and should
always result in a match. Some implementations thus look for
matches that are sequentially lined up perfectly (perfect
matches), and select such matches. For added confidence,
although probabilistically unnecessary under some reason-
able assumptions, the number of hash bits required is calcu-
lated for all three substrings and the maximum of the three
maxima is used. Then we add 6 bits and round up to the next
multiple of 6 (the 64 character encoding used for fragments
encodes 6 bits per character). From experience, it is uncom-
mon for the maximum number of bits required to be more
than 20 bits, which makes the actual number used after adding
and rounding to most often be 30 bits or less. Thus, the three
hashes together take up much less space in the resulting URI
than a single MD5 hash complement of 128 bits. The savings
also includes the elimination of any need for substrings used
to perform initial match candidate filtering.

With such space savings, it is sensible to ask whether even
more can reasonably be done to improve robustness. For
example, it would be useful if anything could be done to find
imperfect matches where the match string is somewhat modi-
fied. This is achieved by encoding a “partitioned hash” of the
Canonical Target into Fragment Identifiers. Here “partitioned
hash” refers to an array containing the high-order bits of hash
values computed over consecutive segments of the Canonical
Target.

FIG. 10 illustrates the partitioning of a Canonical Target
1005 into 11 blocks (alternately called segments) 1010 hav-
ing an equal number of 16-bit code units, and a 12 odd-sized
segment 1030 containing the remaining code units, which did
not make up a full length segment. The number of equal-sized
segments has no minimum and a configurable maximum.

Segments like those shown in FIG. 10 are used to deter-
mine if a Canonical Target matches somewhere in an arbitrary
string. The discussion of FIG. 33 explains this use in detail,
but FIG. 10 illustrates one aspect of detecting matches using
segments. In FIG. 10 a minimum of four consecutive code
units is needed to exactly match any Canonical Target seg-
ment except the last segment. However, a subsequence of four
consecutive code units that matches part of the Canonical
Target will frequently not match any segment because the
subsequence spans a segment boundary. Consider the
sequence “canonical” that is split between Block 3 1015,
Block 4 1020, and Block 5 1025 which is 9 code units long;
only one of the segments 1020 is fully contained by the
“canonical” sequence. Of all the possible four code unit sub-
sequences that match in “canonical”, only one will also match
a segment. It is possible to select sequences of the Canonical
Target of length 6 that do not match any of the segments ofthe
partition (for example, the subsequence “hisist™). If n is the
nominal segment length (4 in FIG. 10), it is possible to select
up to 2(n-1) consecutive code units from the Canonical Form
without matching a segment. In general, a Canonical Target
could have a subsequence up to n—1 code units in length on
each end that is not in a fully matched segment.

US 9,356,574 B2

31

The length of each block is determined by knowing the
length of the target and the number of blocks in the partition.
Typically, the number of bits used for each block hash is much
less than is required to ensure uniqueness of an individual
hash across a document. However, the determination of a best
match involves grouping matches together as well as lining
them up in correct order. Even if each block hash matches in
many places in a document, grouping the matches together
and in the correct order is probabilistically unlikely, depend-
ing on the number of blocks and the number of matches for
each hash.

There is a tradeoff between number of blocks in a partition
and the number of hash bits retained, with more bits per block
needed if there are fewer blocks. There is also a tradeoff with
the smallest contiguous piece of the whole that can be recog-
nized separately from the whole. This concept can be taken to
the extreme of retaining only one bit from each block hash
and using, for example, nominally 128 blocks. In a Conven-
tional Fragment Identifier such a partitioned hash would take
up the same space as a single MDS5 hash. However, unlike
MDS5 or SHA family hashes, a partitioned hash can be used to
find and quantify the nearness of imperfect matches.

To illustrate why this works, we describe the simple case of
1 hash bit, a single 16-bit code unit per block, and a Canonical
Target of 128 16-bit code units. Each code unit appearing in
the Canonical Target will be hashed to either 0 or 1. Typically
about half of the distinct code units will hash to 0 and the
others will hash to 1, with lopsided counts possible but
increasingly unlikely. For purposes of illustration map the
entire Canonical Form, including the target, to its hash bits
and consider them to be strings of binary 1s and 0s. The
Canonical Target is now a 128 bit sequence of pairwise inde-
pendent hash bits, which is a sub-sequence of a larger
sequence of pairwise independent hash bits. The probability
of meaningfully and accidentally matching the 128 bits of the
target somewhere else in the sequence is small; doing this by
accident is akin to obtaining a 128 bit cryptographic key by
making a few guesses. Again, actual duplications are
expected and should match, and we are unconcerned with
possible matches in documents that are not meaningful or
otherwise contrived. A binary sequence elsewhere will typi-
cally match the target bit sequence in about half of its bits, so
the threshold of a good match is somewhere between half and
all of the bits matching. Some implementations use more than
one bit and as we shall see matching can be more sophisti-
cated, but this illustrates why it works.

In embodiments the user indicates a portion or portions of
a document. He typically makes such an indication by select-
ing a portion or portions of the document using a document
editor or browser by clicking and dragging a mouse over the
selection, which is then rendered in a different color or in
some other way to cause the selection to appear different from
the surrounding document contents. In some embodiments
this selection is done in the same manner as for copying a
portion of the contents.

So far, we have treated a selection as a single contiguous
portion of a document. However, for some browsers and
editors a single selection may comprise multiple contiguous
portions of adocument. Thus a selection in general consists of
one or more ranges, and a range is a single contiguous portion
of a document.

In FIGS. 5,6,7.8, and 9, there is a node array, which is
constructed from the DOM instance at hand at the time of
creating the Canonical Form. Beneficially, two node arrays
can differ greatly in structure without affecting the compo-
nents used for matching—canonical prefix, target, suffix, or
the offsets that identity specific content. In fact, the document

20

35

40

45

55

32

type (an HTML document, a PDF document, a document
with Microsoft Word format, etc.), the DOM (as a model), the
DOM instance, and the node array resulting from the DOM
instance may change without affecting the components. For
purposes of finding a range in a DOM instance that is identi-
fied by a Fragment Identifier, the node array is beneficially
constructed from that DOM instance so that the nodes in the
derived array are also nodes in the particular DOM instance.
In this way operations are performed directly against DOM
instances, instead of e.g., HTML files, because the actual
content presented to users may be dynamically created by
scripts.

In order to recover the information content of Fragment
URIs, some embodiments store information useful for recov-
ery in a service across a network. Such a service is called a
“URI Service”. With some limitations involving whitespace,
embodiments can recover the text of any range represented by
a Fragment Identifier from which a Fragment URI was cre-
ated. However, since content is typically copyrighted, simply
serving a missing web page out as a complete copy on
demand to a user agent for display could possibly create legal
complications. For example, a copyright owner might intend
that some material no longer be available and could possibly
construe his rights to have been violated by serving out the
whole of it. Moreover, serving out complete documents for
display requires greater storage capacity and bandwidth.
Instead, in some embodiments, stored content is first used to
search for alternate existing sources across the Internet.

This is beneficial because most information available on
the Internet is available from more than one source and often
in many variations. Even if the information is unique, it can be
moved from one location to another within the same source
domain. Expected information can be missing when you acti-
vate a URI. This is known as “linkrot”. A user may get nothing
at all when he attempts to activate such a document, or more
subtly, information may be missing or changed. This occurs
via editing pages and often by simply changing the address of
a page. Nevertheless, as things stand prior to embodiments,
recovery of the URI may not even be possible in some cases;
in other words, it may not be possible in some cases for a
human with a computer to achieve recovery. With the content
missing, the intended purpose of an arbitrary link cannot
usefully be guessed in all cases, and the only effective
recourse can be to at least partially rewrite the document.

In alternative embodiments, the URI Service indexes the
whole indexable portion of the Internet, and keeps a historical
archive of everything. When requested, it finds the document
version indicated by a particular Fragment URI and URI
prefix. However, such an embodiment would blindly keep a
history of everything in order to ensure the capability of
recovering even one arbitrary Fragment Identifier; such an
approach would require significant resources up front. For
other embodiments, the size of the database and the band-
width used increase with the usage of the URI Service. If an
instance of such an embodiment were to achieve universality,
it would then more closely resemble embodiments that index
the whole indexable portion of the Internet.

Some embodiments only keep information that is needed
to find, in conjunction with a search engine, identical or
similar information that is presently available elsewhere. This
can be considerably less data than is required for archiving the
history of the Internet with the intent of serving it out as if it
all remained available precisely as it existed, in perpetuity.
Besides being compact, the archival nature of these embodi-
ments only engages when a user creates or recovers a Frag-
ment URI. Conventional links may become unusable due to
linkrot, but the information itself might nevertheless remain

US 9,356,574 B2

33

available somewhere else; archival information sufficient to
find related or identical information is smaller than archival
information sufficient to reproduce and display the original
information independently.

Instances of some embodiments are arranged so that a URI
Service obtains knowledge of every Fragment Identifier cre-
ated (of a recoverable type, defined later as version 1 Frag-
ment Identifiers). While more than one instance of an
embodiment could exist, they would have separate databases
and no intentional ability to process Fragment Identifiers
from other instances. Moreover, since 2048 bytes of random
bits defines an instance of the GENERAL hash function
described above, it is probabilistically impossible to create
compatible Fragment Identifiers except by design and pre-
sumably any such choice would be copyrighted. Note that
accurately picking the first eight bytes of a 2048 byte random
sequence is less likely than correctly picking a specific pre-
determined second out of 550 billion years (more than an
order of magnitude longer than the known age of the uni-
verse). Then guessing the rest of the 2048 bytes by accident
would be equivalent to repeating that feat 255 additional
times in succession. Thus an additional benefit of using a fully
randomized hash function is the probabilistic impossibility of
accidentally or inadvertently creating compatible instances of
embodiments, even with a complete specification in hand.
Fragment Identifiers of other implementations would not be
recognized.

If more than one enterprise were to create a URI Service
according to an embodiment, and if they used the same Frag-
ment Identifier encoding and the same hash function to
achieve interoperability, then the distributed system created
by those enterprises is here considered a single instance of the
embodiment.

Atthe time Fragment Identifiers are created, the user agent
requesting creation checks with the URI Service to determine
if a document version consistent with the Fragment Identifier
is already represented in the URI Service database or data-
bases. If it is not, then the user agent sends this information to
the server. By sending the document information from the
machine running the user agent that is requesting creation of
a recoverable Fragment Identifier, user agent machines are
beneficially used to run the scripts and thereby obtain accu-
rate document content, even when the content is dynamically
generated. This avoids the issues that lead to the hashbang
solution for obtaining document content. It also avoids the
potential accuracy issues created by the hashbang solution. It
also avoids any issue of improperly accessing content by the
URI Service; i.e., the URI Service is performing an operation
on behalf of the user who has access to the content at the time
he requests the operation.

As previously discussed for the Common DOM Form,
information kept will be used to perform searches. When a
client sends information for a document to a URI Service, i.e.,
when it sends the Common DOM Form for a document, the
separation between terms (in western languages typically
delimited by whitespace or punctuation) is preserved. Differ-
ent search engines interpret punctuation differently as to what
is and is not a term delimiter, so punctuation is retained
unaltered in the Common DOM Form as well. Ligature
expansion could as well thwart a search in some engines.
Thus, in those embodiments the actual encountered character
sequence is sent from the document, except for changes
involving insertion, modification, and removal of whitespace.
The textual representation can be created by a left-to-right
traversal of all the content nodes of the DOM. For HTML
documents there are two sequences of text that begin this
Common DOM Form followed by the body of the DOM. The

25

40

45

50

34

initial Text nodes are the title of the document and the docu-
ment’s ‘META’ tags description, if they exist, with a space
inserted after each. When Text nodes (including Alt nodes)
are encountered, their text is appended to the Common DOM
Form text until the traversal is complete.

Most DOM node types implicitly separate terms, but some
do not; for example, text and emphasis DOM nodes may start
orend in the middle of a single term. On the other hand, image
and division (‘div’) nodes occur between terms and implicitly
delimit terms. White space is not always explicitly found
between terms in HTML, or in DOM instances built by some
user agents. In aleft to right traversal of the DOM tree starting
at the content root (for HTML the ‘body’ node) a space is
inserted whenever a DOM node that implicitly separates
terms is first encountered and before any text from descendent
nodes is appended; a space is also inserted after all text from
descendent nodes has been appended, and processing the
node is complete.

For an HTML example implementation of an embodiment,
all nodes have a space inserted as described above except for
nodes having the following tags: “a”, “b”, “big”, “em”, “i”,
“param”, var”, and
“Htext”.

Following the traversal, contiguous whitespace is col-
lapsed to a single standard space character and any beginning
and trailing spaces are removed. In some embodiments,
whitespace is defined as the space, tab, carriage return, new-
line, vertical tab, and form feed characters, for this particular
collapse of whitespace.

Those skilled in the art will appreciate that the same result
can be achieved in a single pass over the content and that other
procedures to achieve the same or similar results are possible.

In addition to this textual part of a Common DOM Form,
there is a “Common DOM Node Array”, which is also sent to
the server. It has three types of nodes: “Text”, “Alt”, and
“VnT”. This Common DOM Node Array comprises a
sequence of <node_type, length> pairs; ‘node_type’ gives a
pair’s type and the ‘length’ member contains the length of'the
text for Text and Alt nodes, or 1 for VnT nodes. The first two
Text nodes of the array are called the “Title” and “Descrip-
tion” nodes, in that order. These nodes will always be present
and will not be combined with adjacent Text nodes. If the
document has no title or no description, the corresponding
Text nodes will have zero length.

In the Common DOM Form, a Text node does not follow
another Text node (except for the first two, the Title and
Description); in other words, contiguous text from the body
of'an HTML document is represented by a single Text node,
where ‘contiguous’ as used here means that the text is not
separated by a node that maps to an Alt or VnT Common
DOM Form node. The length member of a Text type node is
the number of code units in the resulting text, including space
characters that remain after spaces have been collapsed.

A document DOM instance node that is determined (ac-
cording to the rules for the particular embodiment) to be
either a VnT type node or Alt node, and which has no non-
trivial alternative text, is represented by a VnT type node in
the Common DOM Node Array. The length of a VnT node
belonging to the Common DOM Node Array is 1. Alt type
nodes represent VnT nodes that have non-trivial descriptive
text. In some embodiments only image nodes may be Alt
nodes; in other embodiments, descriptive text for other VnT
node types such as videos can also be represented by an Alt
node. The length of an Alt type node is the length of the text
from the corresponding image-associated text in the DOM
instance, as represented in the resulting text and may include
inserted spaces. Descriptive text from only one document

29 <

samp”,

29 < 39 Ciie9% <o

small”, “span”, “strong”, “tt”,

US 9,356,574 B2

35
DOM VnT node (e.g., an image node) is represented in a
single Alt node of a Common DOM Node Array.

The length members of the Text and Alt type nodes in the
sequence add up to the length, in code units, of the textual
portion of the Common DOM Form.

For transmission a Common DOM Node Array is repre-
sented by an array of <node_type, length> pairs. For com-
pactness in transmission, a contiguous sequence of length m
of VnT type nodes in a Common DOM Node Array is con-
solidated into a single pair of the form <VnT, m>. This con-
solidation may be seen in graphical form in FIG. 54.

Since the Common DOM Form and ranges within the
Common DOM Form are self-contained, it is possible to
transmit them to a URI Service using a suitable encoding,
including binary encodings. The transmission details are
implementation specific.

A range in a document DOM instance can be converted to
a range in a corresponding Common DOM Form by first
creating the node array as shown by example 510 in FIGS. 5§
through 9. (To see a direct comparison of Canonical Form and
Alternative Canonical Form, as well as image (i.e., Alt) nodes
having non-trivial text see FIG. 53.) The range is found in the
node array constructed from the original document DOM
instance and then, using the Common DOM Form and its
special Alternative Canonical Form (described below), a ver-
sion 1 Fragment Identifier is created for the range according
to the process 1200 of FIG. 12. The newly created Fragment
Identifier is applied to the Common DOM Form for the docu-
ment, according to the process 2700 of FIG. 27, to arrive at a
range. To see a graphical representation of the Common
DOM Form, and a comparison between it and corresponding
node array structures for the same document, see FIG. 53 and
FIG. 54.

The Common DOM Form has the same general form as a
node array constructed from a DOM instance (e.g., an HTML
DOM instance), so a Fragment Identifier could mistakenly be
applied directly to a Common DOM Form instance without
first converting it to a node array. A Common DOM Form
instance is actually a DOM instance and it differs from its
corresponding node array in that the first two nodes (the ‘title’
and ‘description’ nodes) are removed from a Common DOM
Form to arrive at its corresponding node array. Those skilled
in the art will appreciate that implementations may benefi-
cially avoid actually constructing a separate node array for a
Common DOM Form, since the node array derived from a
Common DOM Form is a sub-array of that Common DOM
Form.

In common use, content of' a document at a particular URI
prefix changes over time. Therefore the URI Service can have
many Common DOM Forms for any particular URI prefix.
While the Common DOM Form provides a benefit of proper
separation of terms for later use (e.g., in searches, hence the
retention of spaces and punctuation), a Common DOM Form
can change trivially and a hash over its unmodified content is
not generally stable across simple format changes. Alterna-
tive Canonical Forms are unaffected by many such simple
changes, but if the sequence of terms in a document changes
then the corresponding Alternative Canonical Form hash will
likely also change. For this reason, the data store at the URI
Service associates Common DOM Forms with hashes of their
related Alternative Canonical Forms. However, when con-
structing the Common DOM Form’s Alternative Canonical
Form made for purposes of creating a stable identification for
a Common DOM Form, the “title’ and ‘description’ nodes are
included so that changes to them will also be detected. In this
document the term “Common DOM Form hash” refers to the
hash of this special Alternative Canonical Form, constructed

10

15

20

25

30

35

40

45

50

55

60

65

36

over the Common DOM Form text including the text and
description nodes. Ifthe text and description nodes are empty,
then this rule makes no difference for the Alternative Canoni-
cal Form. This hash is used to detect changes to the document
and can be used to locate its corresponding Common DOM
Form at the server. By design, this special Alternative Canoni-
cal Form can be constructed directly from a Common DOM
Form; subsequent references (explicit or implicit) to the
Common DOM Form’s hash refer to the full 64 bit hash (64
bits in some embodiments) of this special Alternative Canoni-
cal Form of the Common DOM Form.

A range in the Common DOM Form is represented by left
and right range endpoints, each of which consists of ordered
pairs of integers. The first integer in a range pair is the index
of'a node in the Common DOM Form. The second integer is
an offset. The offset is either in code units or in nodes,
depending on the type of node in the Common DOM Form. If
itistype VnT, then the offset is in nodes; if it is any other type,
then the offset is in code units. Note that the text of an Alt type
node is included in its entirety because the image it represents
is included in an HTML DOM range in its entirety. In other
words, ranges do not include partial images (or partial alter-
native text).

The Common DOM Form uses a different model than the
W3C uses for HTML and XML DOM instance range bound-
aries. HTML range boundaries indicate positions between
nodes or code units. As a consequence of this model and the
fact that the HTML DOM uses a tree structure, there is often
more than one way to represent what is in effect the same
HTML range. The Common DOM Form range “boundaries”
use the endpoints of a range, in the form of actual nodes or
code units within nodes. A Common DOM Form range only
has one representation.

If a Common DOM Form range endpoint indexes a VnT
node, then the offset is 0. If a Text node is indexed by a
Common DOM Form range endpoint, then the offset can have
any value up to the position of the node’s last code unit. If an
Alt node is indexed by a range endpoint, then the offset is 0.
If'an object (anode or code unit) is a left range endpoint, then
the objects that come before it (to its left) are excluded from
the range; for a text-type offset, any code units in the same
node having indices less than the offset are excluded from the
range, along with any nodes to the left. If an object is a right
range endpoint, then objects that follow it (to its right) are
excluded from the range; for a text-type offset, any code units
in the same node having indices greater than the offset are
excluded from the range, along with any nodes to the right.

A range is valid provided there is no object that is excluded
from the range by both the range’s left and right endpoints.

While there are several advantages to using a model that
identifies actual objects to delineate a range instead of gaps
between objects, representing the position of a null range
(i.e., one with no content, identifying a gap between adjacent
objects) can be counterintuitive. For a null range (a position
between adjacent objects), the Common DOM Form left
range endpoint is immediately to the right of an object that is
the right range endpoint. The left range endpoint excludes
everything to its left; the right range endpoint excludes every-
thing to its right. Since the left range endpoint is to the right of
the right range endpoint, everything is excluded, leaving an
empty range. If a valid range is empty, then it effectively
identifies the position between the endpoints.

Documents may indicate “Friendliness” to a particular
implementation of an embodiment, in order to better enjoy
the benefits of the corresponding embodiment. The declara-
tion is made within the document in the form of a Boolean
metadata datum, according to some embodiments, which

US 9,356,574 B2

37

indicates that the behavior of any active document content
(e.g., scripts) shall be oblivious to (not depend upon) the
presence or absence of Fragment Identifiers of the particular
implementation. This means in particular that the user expe-
rience will be identical whether a Fragment Identifier of the
implementation in question is present or not, provided the
document is displayed by a user agent (e.g., browser) that
itself has no code sensitive to the implementation’s Fragment
Identifiers. This is a non-trivial assertion; there are HTML
web sites with page scripts that behave quite difterently when
they encounter a Conventional Fragment Identifier that the
script does not recognize. The document may even be redi-
rected to another site and thereby display entirely different
content. This may also occur when there is more than one
Fragment Identifier, which is not precluded by existing prac-
tice or de-facto specifications but is nevertheless unexpected
by the active content of some documents. When seeing the
unexpected, such document scripts may behave as if the entire
URI is in error and may redirect to different content.

This can be achieved in any number of ways in the various
document types. In some embodiments, for HTML docu-
ments this Boolean datum is declared in the header according
to HTML provisions for metadata tags. The actual strings
used to represent this Boolean are implementation-specific.
For example, in HTML documents a declaration of Friendli-
ness to a particular implementation of the preferred embodi-
ment could be made by an HTML statement of the following
form:
<META name="“Maglink” content="Friendly”>

This friendliness assertion is subsumed by a general asser-
tion that active content will ignore unrecognized Fragment
Identifiers, and will act exactly as if the unrecognized Frag-
ment Identifiers were not present. This logically entails an
assertion that multiple Fragment Identifiers (that are not
understood) will not result in different behavior regardless of
the order in which they appear relative to each other or relative
to Fragment Identifiers that are understood. This is more
general since it is not a specific assertion of Friendliness to a
particular implementation of an embodiment. If such a gen-
eral assertion were accurately made in a document it would
achieve similar benefits. In some embodiments this general
assertion is made in HTML headers according to HTML
provisions for metadata tags, and is an HTML statement of
the following form:
<META name="Fragment-Identifier-Extensions”
content="MagLink General Conformance”>

In what follows, a document that makes either of these
kinds of friendliness declarations, then it is referred to as
“Maglink Friendly” or as having declared “Magl ink Friend-
liness”.

Itis useful for any particular implementation of an embodi-
ment to protect itself from possible interference, accidental or
deliberate, by legally restricting sites from making false or
unauthorized declarations of Maglink Friendliness. A delib-
erately false self-declaration of Maglink Friendly can be
used in a subtle denial-of-service attack, whereby false dec-
larations are used to deny anyone the benefit of making accu-
rate declarations. Moreover, as will be described in detail
below, it can be used to enable a means for document scripts
to determine if the user agent is an embodiment, which should
not be determinable except by truly friendly sources of docu-
ments. Therefore, the use of trademark, copyright, and any
other possible legal protections applicable in the various
jurisdictions world-wide that could protect against such mali-
cious usage is advisable. In particular, a key term used (in the
example it is Magl.ink), should be trademarked.

10

15

20

25

30

35

40

45

50

55

60

65

38

There is no requirement that documents be Magl.ink
Friendly, but if documents do declare Maglink Friendliness,
then Fragment Hyperlinks identifying fragments in those
documents can be freely created and used without some
unwanted consequences. In some embodiments, as will be
explained later, these declarations would become unneces-
sary due to standards-based user-agent action that prevents
visibility of such Fragment Identifiers to the active content of
documents. I.e., if the active content of a document simply
cannot see Fragment Identifiers of an embodiment in any
circumstance, then a promise to behave appropriately when
they are seen becomes superfluous. In the absence of general
standards-based provisions, as described above some
embodiments provide a mechanism for documents to self-
declare that document scripts will behave the same whether or
not the user-agent prevents visibility of such Fragment Iden-
tifiers. This is useful because hyperlinks created according to
some embodiments will be interpreted by user agents that do
not act in accordance with those embodiments, and will there-
fore permit document scripts to access Fragment Identifiers
created by embodiments.

Because the active content for some documents and some
user agents will likely not behave according to embodiments,
especially at first as embodiments are adopted, an additional
aspect of some embodiments is a “Safe-Mode” Fragment
Hyperlink provision. A Safe-Mode Fragment Hyperlink is a
special hyperlink format, conformant to existing hyperlink
specifications, which is used under circumstances where a)
user agents that will interpret the hyperlink may not conform
to this specification and b) the target document does not
declare Maglink Friendliness. l.e., these embodiments do
not encourage the use of a Safe-Mode Fragment Hyperlink
where either the interpreting user-agent is known to behave
according to the specific embodiment, or the target document
self-declares MagLink Friendliness.

A Safe-Mode Fragment Hyperlink according to some
embodiments has a ‘href” attribute URI value that does not
comprise a Fragment Identifier of an embodiment. Instead,
the full Fragment URI is contained in another attribute of the
hyperlink, one that is only examined and used by user agents
acting according to the embodiment that created it. The name
of the attribute is implementation specific. In an example
implementation, the name of this full Fragment URI attribute
is ‘maglink_href”. For clarity and without loss of generality,
we hereafter refer to this attribute by this example name of
‘maglink_href’. When a user agent acting in accordance with
its embodiment is requested to activate a Safe-Mode Frag-
ment Hyperlink (e.g., a user clicks on the hyperlink in a
browser), the user agent checks for the presence of a
‘maglink_href” attribute and, if present, verifies it as a Frag-
ment URI and then (in some embodiments) further verifies
that the ‘maglink_href” attribute URI and the ‘href” attribute
URI are identical up to the first hash. If these verifications
succeed, then the user agent activates the Fragment URI from
the ‘maglink_href” attribute. Otherwise it activates the URI of
the ‘href” attribute. A user agent that is not an embodiment
will typically act according to existing practice and specifi-
cations, which means that it ignores the ‘maglink_href’
attribute that it does not recognize, and activates the URI of
the ‘href” attribute. In this way the use of a Safe-Mode Frag-
ment Hyperlink prevents a Fragment Identifier of an embodi-
ment from being interpreted by scripts of a hyperlink-target
document when it is activated by a user agent that is not an
embodiment.

For simplicity the above description of Safe-Mode Frag-
ment Hyperlinks ignores an intra-document navigation
aspect of embodiments, which is the use of Safe-Mode Frag-

US 9,356,574 B2

39

ment Hyperlinks for same-document references. This usage
follows the pattern of relative URIs in HTML, whereby a
hyperlink references a different part of the same document
identified by a named anchor, which is a common usage of
existing Conventional Fragment Identifiers. If the
‘maglink_href” attribute of a Safe-Mode Fragment Hyperlink
begins with a hash, i.e., it is a naked Fragment Identifier, or it
has the same URI prefix as the referencing document, then
some embodiments interpret it as an identifier of content in
the same document and its ‘activation’ occurs in that same
document display. The ‘href” attribute of such a hyperlink can
point to the nearest target anchor, such as an earlier heading,
or it can identify nothing at all. Since relative hyperlinks that
have no matching anchor are ignored by user agents that are
not embodiments, if the ‘href” is to be inoperative then the
maglink_href Fragment Identifier can be dispensed with and
its value placed in the ‘href” attribute.

Itis perhaps counterintuitive that there is significant advan-
tage in the creation of intra-document references in that the
referenced content need not be modified; after all, creating the
link itself modifies the document. Nevertheless, such capa-
bilities have utility beyond the elimination of the work
required to create a target anchor in the document. For
example, in a forum web page or a blog, where a particular
document grows as different people post messages into it, the
only modification possible for a normal contributor is to
append new content in the form of a message or post. In such
a case modifying what is already there is not possible but
adding new content with arbitrary embedded links is often
allowed. An intra-document Safe-Mode Fragment Hyperlink
can take a user to the specific content referenced without
modifying it. This navigation is of value even if the user also
wishes to quote the referenced content, because a reader may
want to see additional context of that content. Today, consid-
erable existing context is copied into the same document in
follow-on posts that is marginally pertinent, in order to pro-
vide context, even though it is already there earlier in the
document. In some embodiments the most pertinent content
can be copied (if desired) as well as referenced by a Fragment
Hyperlink, and by activating it a user can select the referenced
copy and scroll it into view automatically, which identifies the
pertinent content in its original context. Then the back-button
returns the user to the location where he started in the same
document. Comments added to blogs can use the same facil-
ity. In addition to user convenience, this facility reduces the
need for user driven duplication of content. Note that this is
superior to use of position style fragment hyperlinks in such
a situation, as they are more prone to linkrot because of the
continually changing nature of such documents.

In another aspect of some embodiments, both intra-docu-
ment and inter-document Fragment Hyperlinks can advanta-
geously be Safe-Mode Fragment Hyperlinks, even though the
target document might be Maglink Friendly. According to
this aspect, when a Fragment Hyperlink of an embodiment is
created, an analysis of the structure of the DOM is made to
determine if there is a “suitable nearby anchor” that can be
targeted by a Conventional Fragment Identifier. If there is
one, then the Conventional Fragment Identifier is appended to
the URI prefix to obtain the ‘href” attribute, and the Fragment
Identifier of an embodiment is appended to the URI prefix to
obtain the ‘maglink_href” attribute. This allows a conven-
tional user agent to scroll the document to the general vicinity
of the targeted content; thereby the user obtains benefit from
activating a Fragment Hyperlink of an embodiment even ifhis
user agent does not comprise an embodiment. According to
those embodiments, a suitable nearby anchor is an anchor that

20

40

45

50

40

is determined by examination of the DOM instance of the

document to have the following characteristics:

1. Some hyperlink within the document itself targets the
anchor. This requirement derives from uncertainty about
script behaviors. If no hyperlink of the document targets an
anchor then it is unknown whether the scripts of the docu-
ment will misbehave when they see a URI with a Conven-
tional Fragment Identifier. Some existing scripts will con-
sider either a Conventional Fragment Identifier or
Fragment Identifier to be an error and will change the
display to unrelated content.

2. It is partially or completely within the first range of the
user’s selection or it precedes the first range of the user’s
selection when the Fragment Identifier is made. To choose
between more than one possibility, those partly or com-
pletely within the range are preferred over those without
and then the anchor nearest to the start of the first range is
preferred.

As described before, here the term ‘Fragment Hyperlink’
applies to all fragment hyperlinks of embodiments, which
includes Safe-Mode Fragment Hyperlinks. By ‘Normal-
Mode’ Fragment Hyperlink we refer only to those hyperlinks
that use a Fragment URI of an embodiment as the value of the
href attribute.

The Sate-Mode Fragment Hyperlink provision is desirable
because the alternatives can be less desirable in some circum-
stances. However, over time it can be deprecated provided an
implementation of a specific embodiment comes into wide-
spread use. It is a suboptimal solution in that its use can
interfere with desirable processing of the full Fragment URI,
even when the user agent displaying the document is an
implementation of the corresponding embodiment. For
example, a word processor or email application may have a
document open that contains a Safe-Mode Fragment Hyper-
link, which the user clicks. Because the word processor
knows nothing about Safe-Mode Fragment Hyperlinks, and
in particular it does not recognize the maglink_href attribute,
it passes the URI of the href attribute to an Internet browser.
The browser that opens the URI could be an implementation
of the corresponding embodiment, and therefore capable of
interpreting the maglink_href Fragment URI—but it never
sees it in this scenario. The common clipboard-centric prac-
tice of copying or creating an HTML hyperlink and pasting it
into modern document editors including Microsoft Word
documents, web page editors, and email editors will set up
this scenario. Thus beneficially, if a document declares itself
Maglink Friendly, only Normal-Mode Fragment Hyperlinks
need be created for it. In those circumstances where the href
attribute would contain a Conventional Fragment Identifier,
and a user is advanced enough to understand the conse-
quences of his choice, he may beneficially choose a Safe-
Mode Fragment Hyperlink over a Normal-Mode Fragment
Hyperlink even where the target document is Magl.ink
Friendly.

Another aspect of some embodiments is indirect Fragment
Hyperlinks, wherein a simple URI is created as a unique
“Surrogate URI” (or just “Surrogate™) for a Fragment URI
and an associated conventional URI. Surrogate URI based
hyperlinks are called “Surrogate Hyperlinks”. In such
embodiments, a network “Redirect Service”, on receiving
HTTP requests for Surrogate URIs, returns HTTP redirect
responses (in some embodiments either 302 or 303 HTTP
responses, but others such as 301 and 307 may also be used)
to the user agent. In the HTTP response from the Redirect
Service, the URI prefix (possibly suffixed by a Conventional
Fragment Identifier associated with the Fragment URI) is sent
in the standard manner as the URI to be activated. The Frag-

US 9,356,574 B2

41

ment Identifier of an embodiment and the Conventional Frag-
ment Identifier (if there is one) are sent in a HTTP custom
response header created for that purpose. According to the
usually followed convention, some embodiments use a cus-
tom header name that is prefixed with “X-"; an example
implementation of one of those embodiments uses the header
name “X-Mag-Link-Fragments”. A conventional user agent
activates the URI that appears in the standard part of the
response. A user agent comprises a matching implementation
of an embodiment if it recognizes the custom response header
name and from its value can extract the Fragment Identifier
and, if present, the Conventional Fragment Identifier. If the
user agent comprises a matching implementation, then it
removes the Conventional Fragment Identifier from the UR],
appends the extracted Fragment Identifier, and then allows
activation of the resulting Fragment URI to proceed. In alter-
native embodiments the Conventional Fragment Identifier is
not removed even though the scroll position that it establishes
will be modified by processing of the Fragment Identifier; this
alternative behavior has an advantage in some circumstances
if the document has changed and the Fragment Identifier no
longer identifies content; however, it has a disadvantage if the
document changes have also moved or removed the anchor
used by the Conventional Fragment Identifier.

In order to give the user opportunities to upgrade his user
agent to enjoy the benefits of an embodiment, a user agent
acting according to that embodiment sends a custom header
in the HTTP request to the Redirect Service whenever it
makes HTTP requests using a Surrogate URI. If the Redirect
Service does not see this custom header in a request having a
Surrogate URI, then it knows that the user agent does not
comprise an embodiment. In order to do this efficiently and
only for Surrogate URI requests, in some embodiments that
provide this capability, each Surrogate URI has a common
short prefix that is used solely for Surrogate URIs associated
with the embodiment. According to the usually followed con-
vention, some of these embodiments use a custom header
name that is prefixed with “X-"; an example implementation
of an embodiment uses the header name “X-Mag-Link-
Agent” with the assigned value having a prefix of “MagLink”.
A version number for the embodiment follows the
“Maglink” string. The Redirect Service also causes an HTTP
cookie to be created by the user agent to persistently keep the
user’s preferences concerning offers to upgrade or extend his
user agent.

In some embodiments, the user is given opportunities to
upgrade to a user agent that comprises an embodiment.
Before such an opportunity is offered, there are a number of
checks that are made at the Redirect Service based in part on
the value of the cookie passed to the service. The following
are checked:

1. Has the user agent declared in the HTTP request header to
be an embodiment and a sufficiently recent version?

2. Has the user asked to not be offered an opportunity to
upgrade or extend this user agent for a period of time? In
some of those embodiments this information is kept in a
browser cookie for the domain of the Redirect Service with
a time stamp. If the user deletes his cookies then this
information is lost. By default, less than one week is
“recently”, but this is a configurable amount of time.

3. Has the user expressed a desire to never again be offered to
upgrade or extend his user agent by the Redirect Service?
In some of those embodiments this information is keptin a
browser cookie for the domain of the Redirect Service. If
the user deletes his cookies then this information is lost.

4. Can this user agent be upgraded or extended to an embodi-
ment? In some of those embodiments this information is

10

15

20

25

30

35

40

45

50

55

60

65

42

determined based on the cookie information that is sent

with HTTP requests to the Redirect Service. The generic

browser identification information, which is sent with

HTTP requests, is not used for this purpose in some

embodiments because of its unreliability.

5. Is a user agent that comprises an embodiment available for
the user’s platform (computation device)?

If the user agent is already a sufficiently recent embodi-
ment, the user has requested to not be offered this opportunity
at this time or forever, or no user agent embodiment is avail-
able for the platform, then no offer is made and the Redirect
Service sends the redirect response. Note that the identifica-
tion information contained in a standard HTTP request gen-
erally includes platform and browser identification informa-
tion. However, browsers often identity themselves
incorrectly or otherwise interfere with accurate determination
based on the browser identification string sent to services that
process HTTP requests. Therefore, the identity of the plat-
form is also determined definitively based on information
stored in the cookie. In some embodiments that use cookies,
if no cookie is present then the platform identification is taken
as unknown and a page that uses scripts to make those deter-
minations at the user agent is served out by the Redirect
Service.

Ifthe Redirect Service responds with a document (i.e., not
with a redirect response), then the document’s scripts accu-
rately determine the type of platform (both hardware and OS).
It communicates this information back to the server, which
determines whether the platform can be upgraded to a user
agent that comprises an embodiment. If the platform is not
suitable then the platform information is stored in a cookie
and the page’s scripts redirect. The platform information in
the cookie allows the server to immediately redirect in the
HTTP response on subsequent requests. If the platform is
suitable and if the user’s current user agent can be upgraded or
extended to an embodiment, then content that offers to per-
form that specific user agent upgrade or install the extension
is presented to the user. If changing user agents is required to
make the upgrade, then the situation is explained to the user
and an offer is made to make the required installations. When
anupgrade offer is made, the user is also given an opportunity
to indicate that he does not want such offers in the future, both
for a period of time and forever, depending on the user’s
choice. If the user chooses to upgrade his running user agent
then the upgrade is performed, if possible, without halting the
user agent and then the Fragment URI represented by the
Surrogate URI is activated. If the upgrade cannot be or is not
performed on the running user agent, then the upgrade is
performed and the user agent is restarted (if possible) with
restoration of the user agent session. Such restoration will
beneficially restore the Surrogate URI, but since the user
agent now comprises an implementation of an embodiment,
the Fragment URI represented by the Surrogate URI is auto-
matically activated by the Redirect Service. Whether the user
has chosen to upgrade or not, his upgrade preferences are
saved in a cookie along with accurate platform information. If
he did not choose to upgrade, the original user agent instance
is still active and the conventional URI represented by the
Surrogate is activated by document scripts (originally pro-
vided with the document from the Redirect Service).

In alternative embodiments, the Redirect Service deter-
mines whether the user agent comprises an embodiment by
parsing the browser identifier string. The information that this
is an embodiment is appended to the browser identifier string,
which by standard HTTP specifications goes with HTTP
requests.

US 9,356,574 B2

43

Advantages of Surrogate URI based hyperlinks include
that they can take the place of Safe-Mode Fragment Hyper-
links (except intra-document hyperlinks, which are best
served by Safe-Mode or Normal-Mode Fragment Hyperlinks
as described above). A site can obliviously use Surrogate
URIs and Surrogate Hyperlinks as they would any other URI
or hyperlink when they identify an external document. For
example, a user could create a Surrogate URI or Surrogate
Hyperlink and embed it in an email, MS-Word document, or
a forum web site and it would work as a simple URI or
hyperlink when activated on browsers that are not embodi-
ments; it would work as a Fragment URI or Fragment Hyper-
link on browsers that are embodiments. Moreover, without
specific cooperation from scripts in documents that contain
Surrogates, an embodiment’s redirection service can inform a
user whose user agent is not an embodiment, in a temporarily-
displayed document, that he is opening or activating a URI
intended for precise identification of content; it can show him
what that means by example and provides him with an oppor-
tunity to upgrade or install software to take advantage of the
capability.

Such a redirect, which may be implemented as 301, 302,
303, and 307 redirects in the HTTP protocol, generally results
in the original referrer becoming the HTTP “referer”. (Note
that the misspelling of referrer as “referer” is intentional to
match the HTTP specifications that define a “referer”.) How-
ever, the specifications do not require this behavior. Tests
have shown that 302 redirections on most browsers work as
desired, but again it is not required by the specifications. User
agents are also not required by the specifications to behave the
same in this regard with the different types of HT'TP redirects.
For this and other possible implementation differences for
any particular user agent or user agent version, the use of any
of the possible HTTP redirects may be preferable over the
others; thus, in some embodiments the determination
between types of HT'TP redirects is done using configurations
of the Redirect Service. These configurations can be as spe-
cific as a particular version number of a user agent, depending
on how it is identified by the HTTP browser identifier string
passed to the Redirect Service in HTTP request headers by the
user agent.

While Surrogate URIs can avoid most disadvantages (de-
scribed above) of Safe-Mode Fragment Hyperlinks and thus
satisfy normal expectations of most users, it has some disad-
vantages for services that serve out web pages. For example,
of'significance to many web sites is the accuracy of a database
where they keep the value of the referring URIs, which tells
an Internet service how visitors to its site found it. In spite of
the efforts (described above) to preserve the accuracy of such
usage, in principle according to the standard specifications
this surrogate approach could reduce the accuracy of such
databases. Moreover, even if all user agents of interest
behaved identically, and used the original source as the refer-
rer when receiving HTTP redirects, a redirection service
could obtain important business information about the target
service that they would otherwise not have access to. In
particular, a third party redirection service could obtain accu-
rate statistics for either outgoing or incoming requests (essen-
tially the same statistics as the sites themselves) for any site
where traffic was redirected substantially through such a ser-
vice. Generation of such statistics could potentially be a valu-
able service to some businesses, but other businesses could
find it an unwanted loss of sensitive business information.

Thus, while use of Surrogate URIs solves usability prob-
lems from the end user’s perspective, some embodiments also
provide for the creation and use of Safe-Mode Fragment URIs
to accommodate other needs and in particular some needs of

40

45

55

44

web service businesses. Because of simplicity and ease of
use, end users are beneficially encouraged to create Surrogate
URIs wherever they will meet that end user’s needs, and leave
Safe-Mode Fragment URIs mainly to those who have specific
needs for characteristics not provided by Surrogates.

In another aspect some embodiments provide for the auto-
mated conversion of Surrogate Hyperlinks to Safe-Mode or
Normal-Mode Fragment Hyperlinks as appropriate, as well
as the reverse conversion of Fragment Hyperlinks to Surro-
gate Hyperlinks. For embodiments where Surrogate URIs are
always created for recoverable Fragment URIs (i.e., version 1
Fragment Identifiers as described presently), the conversion
to Surrogate URIs is performed by look up at the URI Service
or Redirect Service starting with that Fragment URI. To con-
vert the other way, first look up the Fragment URI using the
Surrogate URI. Whether to convert to a Safe-Mode or Nor-
mal-Mode Fragment Hyperlink is determined by the Boolean
of'the Fragment Identifier, which indicates whether or not the
URI identifies a Maglink Friendly document. This Boolean is
described presently.

Conversion uses communication with the URI Service but
automatically inserting the results into a document or a data-
base from which documents are generated in general requires
secure access to that document or database. Some embodi-
ments provide code libraries containing interfaces to these
conversions using licensee code that invokes the library inter-
faces. This allows automatic conversion do be done from code
that has security credentials that enable modification of lic-
ensee documents and databases. Such conversions can occur
at the time that information is added to a document. For
example, when a forum or web blog accepts a posted message
for display on a page, the post is parsed for Fragment Identi-
fiers (of an embodiment) and those found are converted to the
desired form prior to insertion into the forum or blog docu-
ment.

In another aspect of some embodiments (and subject to
appropriate configuration to act as described), when a Frag-
ment Hyperlink is inserted into a document such as a blog or
forum document, the URI prefix is compared with the URI of
the document into which the hyperlink is being inserted. [fthe
two URIs match then the hyperlink is converted into an intra-
document (i.e., local) hyperlink; this means that the URI
prefix is removed from the Fragment Identifier and, if one
exists for this URI, the Conventional Fragment Identifier. If
there is no Conventional Fragment Identifier then a Normal-
Mode local Fragment Hyperlink is created; in HTML this
means that the Fragment Identifier part of the Fragment URI
(i.e., absent the URI prefix) becomes the value of the hyper-
link’s href attribute. If there is also a Conventional Fragment
Identifier, the hyperlink’s href attribute is set to the Conven-
tional Fragment Identifier string and the maglink href
attribute is set to the Fragment Identifier string. The Fragment
Identifier and Conventional Fragment Identifier are obtained
from the Redirect Service in a redirect response from the
Surrogate. A benefit of this aspect is that such hyperlink
activation results in simple navigation within the document.

In another aspect of some embodiments, when part or all of
adocument is copied to the clipboard, any relative hyperlinks
are converted to absolute hyperlinks. In addition to that
behavior, in some of those embodiments, when a Safe-Mode
Fragment Hyperlink is copied the ‘maglink_href” Fragment
Identifier attribute’s value is prefixed with the document’s
URI prefix (the URI of the document absent any embodiment
Fragment Identifiers and any Conventional Fragment Identi-
fiers that match anchors in the document). This is done before
the HTML is placed in the clipboard.

US 9,356,574 B2

45

In another aspect of some embodiments, when an end user
activates a Surrogate URI and is presented with the opportu-
nity to upgrade to an embodiment, the presented document
includes a snippet from the targeted information. This is
gotten by looking up the targeted information at the URI
Service from the Common DOM Form that is stored there to
identify the targeted information. If the identified information
is short (i.e., snippet length or less), then it is presented in its
entirety to the end user. If the identified information is longer,
a snippet length prefix is chosen and used for this purpose.
While it is configurable, by default snippet length means 200
Unicode characters or less. In either case, the user can press a
button in the document as many times as he likes; the dis-
played page will select the snippet and scroll it into view to
give the user a flavor of how an embodiment works. These
actions are effected by JavaScript embedded in the displayed
document, so that a user agent that enables JavaScript will
provide the user with the desired experience. In alternative
embodiments, use of this snippet is conditioned on whether
the targeted document has a copyright notice. In other
embodiments, by default, the target document’s snippet is not
displayed if the owner of the copyright that covers the snippet
has requested, according to legal requirements for making
such requests, that the enterprise providing the URI Service
not use information from that copyrighted document in this
manner. However, this prohibition can be overridden accord-
ing to configuration for content based on its length and its
length in relation to the full length of the document. Further,
such configurations can be applied separately to particular
web sites or parts of web sites.

In another aspect of some embodiments, when an end user
activates a Surrogate URI and a Redirect Service presents an
opportunity to upgrade to an embodiment, the end user’s
navigation history is used to identify advertisements appro-
priate for that user, to be displayed in conjunction with
upgrading his user agent. Some of these embodiments target
users for specific advertisements in a manner described later
in this description. If no targeted advertisements are identi-
fied, then untargeted advertisements are chosen. One or more
advertisements are chosen depending on the form factor of
the user agent and his platform, and these are displayed in the
document that presents the user with an opportunity to
upgrade.

FIG. 11 illustrates the creation of a recoverable Fragment
URI and a Surrogate, Normal-Mode or Safe-Mode Fragment
Hyperlink from a user selection, and then placing the results
in the clipboard. After the user makes his selection, he indi-
cates a desire to construct a link to the selection in that
document 1105; for example, the user may use a mouse to do
this by first making a selection and then, from a list where
simply copying the selection would logically be a choice, he
indicates his desire to create a link to the selected portion of
the document. The URI for the document is modified by
removing any Fragment Identifiers of this embodiment 1110,
and then any Conventional Fragment Identifier that identifies
a specific (existing) target anchor in the document; the result
becomes the URI prefix. Construct the special Alternative
Canonical Form for the document and calculate its full (pret-
erably 64-bit) Common DOM Form hash value.

At the user agent create 1120 an HTTP request to the URI
Service. Its purpose is for retrieving a document from which
the user can control the creation of Fragment URIs and Frag-
ment Hyperlinks. The HTTP request includes the URI prefix
of the document and selected text. In some embodiments this
is performed using an HTTP POST request with the URI
prefix and the selected text in the body of the message. The
selected text is truncated if it is longer than a configured

10

15

20

25

30

35

40

45

50

55

60

65

46

maximum, which maximum by default is 4000 characters. If
there are fewer than a configured minimum number of char-
acters in the selection, then the context surrounding the selec-
tion is included equally on both sides until the configured
minimum number of characters is reached or the document is
exhausted; the configured minimum is 100 by default. How-
ever, only whole terms (words) are taken and thus the result
may exceed the configured minimum number of characters. If
a selection has multiple ranges, the first configurable number
of'ranges is taken to be the selection; by default the number of
ranges is 4. The longest range is truncated until the configured
maximum limit (again by default 4000) of characters is
achieved. Whole terms (words) are eliminated instead of
single characters. This request may be repeated and meets the
requirements of the HTTP specifications’ defined notion of

“safe” requests in that it does not create obligations on the part

of the sending user or user agent. In order to accommodate

information that may require longer URIs than some user
agents can tolerate, the bodies of HI'TP POST messages are
nevertheless used in some embodiments.

Atthe service, using the received URI and selected text, the
user’s navigation history is updated to include a request for
creation of this Fragment URI and its activation record. The
record will not contain the Fragment URI at this point because
it has not yet been created; after the Fragment URI has been
created according to user preferences, the record will be
updated with it. Then advertisements are selected from avail-
able advertisements according to the embodiments being
used and the user’s navigation history as described later.

With advertisements chosen, the URI Service of some
embodiments creates and serves out 1130 a document in
response that displays the selected text, displays the adver-
tisements, has boxes to display hyperlinks and URIs (to be
created later and then displayed), and gives the user control
choices including the following:

1. Create a Surrogate Hyperlink.

2. Override the normal behavior and create either a Safe-
Mode Fragment Hyperlink or a Normal-Mode Fragment
Hyperlink regardless of the characteristics of the docu-
ment.

3. Never incorporate alternative image text, even if it is found
in the selection.

4. Always incorporate alternative image text.

5. Ask the user each time about image text but only if image
text is present and could be included.

6. Make these choices the default.

7. Subscribe to a paid service to avoid advertising.

8. Append a Fragment Hyperlink to the HTML for the selec-
tion, or make the selection into a Fragment Hyperlink.

9. Create-the-Hyperlink now button. When this is pressed, the
hyperlink is created according to the preferences.
Starting with the document and the selection, a Fragment

Identifier is created 1135 for the selection. Details of Frag-

ment Identifier creation are given in the process 1200 of F1G.

12 based on the user’s preferences expressed here.

If possible, identify a nearby conventional anchor 1140
that, if appended to the URI prefix as a Conventional Frag-
ment Identifier, would create a conventional URI that causes
scrolling to a part of the document near the selection. If no
targetable anchor is found, then no Conventional Fragment
Identifier is used. Initially only anchors that are targeted by
hyperlinks in the document itself are considered. This is done
because, if no hyperlink actually targets an anchor in the
document then the page scripts might view either a Conven-
tional Fragment Identifier or a Fragment Identifier as an error;
when such an “error” is encountered, some scripts will open
entirely different and unwanted content. Next “targetable

US 9,356,574 B2

47

anchors” (i.e., anchors that are unique amongst the docu-
ment’s anchors and thereby have uniquely targetable identi-
fier strings) that are entirely or partially within the selection’s
first range are considered; if there are any, the first of these is
selected. Next targetable anchors that precede the first range
of'the selection are considered, and the last of these is taken if
there are any. If no anchor was selected, then no Conventional
Fragment Identifier is used; if a suitable anchor was identi-
fied, then its identifier string is prefixed with a hash (‘#’) to
create the Conventional Fragment Identifier. The URI prefix,
the new Fragment Identifier, any Conventional Fragment
Identifier, and the full 64 bits of the Common DOM Form
hash are sent to the URI Service.

As described below, some embodiments check to see if an
exact or nearly-exact document indicated by the user agent is
already entered in the URI Service database. This is done by
checking whether the full Common DOM Form hash sent by
the user agent matches one already associated (via the Com-
mon DOM Form) with the URI prefix that was sent. If none
match but there are one or more Common DOM Form entries
for the URI prefix, it checks to see if the new Fragment
Identifier matches somewhere in the most recent one, as
described in detail below.

In the URI Service database, if there is 1150 a Common
DOM Form for the URI prefix having a full Common DOM
Form hash value that matches the hash value transmitted from
the user agent, or the new Fragment URI matches 1153 per-
fectly (see below) in the latest Common DOM Form (if there
is one) for the URI prefix, then verify 1158 (if not already
verified in 1153) a perfectly matching association between
the new Fragment Identifier and the Common DOM Form
and persist that association. Also persist the association
between the Conventional Fragment Identifier (if there is one)
and the new Fragment Identifier. Mark the new Fragment
Identifier as created by the user making these requests
through his user agent. Note that in some embodiments the
creation of a version 1 Fragment Identifier may occur without
such a specific request by a user; for example, a search engine
may create aversion 1 Fragment Identifier in association with
a search-generated snippet, so no “user” per-se is associated
with the request; the search engine is marked as the creator of
the Fragment Identifier.

Set the current time (now) as the last-encountered time
stamp for the Common DOM Form.

Determining if a new Fragment Identifier perfectly
matches in a Common DOM Form is done in substantially the
same way as a search for perfect Fragment Identifier matches
in a document DOM is done in a user agent. If there are
multiple ranges they are separated into individual Fragment
Identifiers as is illustrated 2220 in FIG. 22. The now-separate
Fragment Identifiers are processed against the Common
DOM Form as illustrated in process 2700 of FIG. 27. Note
that process 2700 requires a DOM instance as input, from
which it first constructs a node array, but the Common DOM
Form is already essentially in node array form. Unlike at the
user agent, there is no complicated DOM instance for input
and the node array that is constructed from the DOM need not
actually be constructed in an implementation because the
Common DOM Form is already effectively in the required
form (i.e., the first two nodes and their text can be ignored
during processing). Ranges in the Common DOM Form are
created by essentially the same procedures as used for creat-
ing a range in a DOM; however, since Common DOM Form
range endpoints identify objects (nodes and code units)
instead of gaps between objects, the final translation of a
range into an HTML style DOM tree is not done; i.e., the
translation step 3565 to the DOM of FIG. 35 is not performed.

5

10

15

20

25

30

35

40

45

50

55

60

65

48

(In subsequent uses of this procedure, the strings identified
against the Common DOM Form will be used to recover
Fragment Identifiers by searching for that content.)

To reduce the computation cost ofthe process 2700, the last
Common DOM Form for a URI could have a pre-computed
Canonical Form and Alternative Canonical Form. Transmis-
sion and storage of the Common DOM Forms beneficially use
deduplication technology to reduce transmission bandwidth
and storage space.

In the URI Service database, if there is 1150 no Common
DOM Form for the URI prefix whose Common DOM Form
hash value matches the hash transmitted from the user agent,
and the new Fragment URI does not match 1153 perfectly in
the latest Common DOM Form (if there is one) for the URI
prefix, then the Common DOM Form is transmitted 1155
from the user agent to the URI Service, where it is verified
(see below) and stored in association with the full 64 bit
Common DOM Form hash and the URI prefix. Set its first-
encountered time stamp to the current time (now). Verify
1158 a perfectly matching association between the new Frag-
ment Identifier and the Common DOM Form and persist that
association. Also persist the association between the Conven-
tional Fragment Identifier (if there is one) and the new Frag-
ment Identifier. Set the last-encountered time stamp for the
Common DOM Form to now.

Verification of the Common DOM Form consists of its
transformation into the special Alternative Canonical Form,
calculation of its hash, and verification of the new hash
against the hash sent from the user agent. If any of the veri-
fications fail then the user agent (and user) is informed of a
fatal error, any persisted changes are backed out of the data-
base and processing halts at the URI Service for process 1100.

The URI Service creates 1160 a unique Surrogate URI for
the URI prefix and new Fragment Identifier in combination. It
is sent to the user agent. Here “unique” means that a common
URI prefix (for all Surrogate URIs) is appended with a
Base64 encoding of an integer that has been chosen as an
identifier of exactly one URI prefix and Fragment Identifier in
combination in the URI Service database or databases. If a
particular integer has already been used, then it may not be
used again for this purpose. The length of the integer is kept
short by using only as many bits of the randomly generated
integer as are required to achieve uniqueness in the database.
Ifthe number of bits required is 4 more than the number of bits
required to enumerate all of the database entries, then the
pseudo random number is abandoned and another generated
for this purpose. A configurable minimum number of bits are
nevertheless used, which by default is 30.

In alternative embodiments, if the Common DOM Form
hash does not match 1150, then the Common DOM Form is
always transmitted 1155 to the URI Service. In other words,
there is no secondary check to see if the Fragment Identifier
nevertheless matches in the existing Common DOM Form.
Advantages of these alternative embodiments include that the
entire context of Fragment Identifier content is always guar-
anteed to be available. Disadvantages include that the space
requirements at the URI Service are greater. This disadvan-
tage is exacerbated by the fact that some dynamic documents
are altered frequently and may change every time the docu-
ment is loaded. Such fast changes are typically made to minor
aspects of a document, such as a time stamp or a change in
advertising information, but they are changes nonetheless.
Since a user selection across such fast changing dynamic
content is relatively unlikely (these are not the parts of a
document that users typically want to communicate or
remember), embodiments that provide a secondary check to
see if the Fragment Identifier nevertheless matches in the

US 9,356,574 B2

49

existing Common DOM Form provide a significant beneficial
reduction in the number of versions stored.

The user agent creates 1163 HTML markup for each range
of'the selection, including any contained images. This can be
done by multiple means including by working directly with
the textual markup for the document. In some embodiments it
is performed by finding the deepest (or lowest in the DOM
instance tree) common ancestor node (here the “ancestor”
could be the node itself) to the two boundary nodes of the
range (which could be the same node). Then the deepest
ancestor node of that node which can be cloned is found. Note
that cloning of DOM nodes is a standard operation against
HTML DOM instances; in general HTML element nodes
may be cloned. The identified node with its descendents is
cloned to obtain a new tree of nodes. The content of the cloned
structure that corresponds to nodes or text that is excluded
from the range in the DOM instance is pruned from the cloned
tree. The resulting cloned node tree is at this point effectively
a copy of what is in the range.

A new root node of type ‘span’ is created and made the
parent of the root node of the cloned copy. The input nodes are
removed from the tree, together with their descendents. Script
and noscript nodes and their descendents are removed.
Anchor (“a’) nodes (which as a group include hyperlinks) are
removed from the tree while preserving node order; i.e., an
anchor node’s descendents are made children of its parent
node in-order and they take the position of the anchor node in
the parent node. Then an HTML snippet is obtained for this
created tree, which in some embodiments for HTML docu-
ments is done by retrieving the innerHTML property of the
root node, which contains the HTML for the descendent
nodes, in order. This HTML snippet (snippet here means that
it is not a complete document) is the generated HTML for the
range. The HTML snippets for the (possibly multiple) ranges
are concatenated in their original order to obtain the HTML
for the selection. Depending on the user’s choice, either cre-
ate a Fragment Hyperlink by surrounding the selection’s
HTML with an HTML anchor, or append an HTML anchor to
the newly-created HTML. In either case, the values of the
anchor’s ‘href” and ‘maglink_href” attributes are determined
as described below. If the hyperlink surrounds the HTML for
the selection, then in effect the whole of the text becomes the
clickable hyperlink. If the hyperlink is appended, then some
embodiments display an image that is about the height of text
and which has an “alt’ text attribute. In an example implemen-
tation of an embodiment, the “alt’ text attribute of the image is
“Maglink” and the image is a stylized icon-sized image that
contains “Maglink”.

If'it is 1165 the user’s choice to construct hyperlinks using
Surrogate URIs, then the Surrogate URI is set 1180 as the href
attribute value for the hyperlink and no maglink_hrefvalue is
created for the hyperlink. Then place 1185 the generated
HTML (including the hyperlink) in the clipboard for type
html, and place the Surrogate URI in the clipboard for type
text.

In what follows it is assumed that the user has not chosen to
create Surrogate Fragment Hyperlinks.

If it is the user’s choice is to construct 1168 only Safe-
Mode Fragment Hyperlinks or the document does not declare
1170 itself Magl.ink Friendly and the user agent is not con-
figured 1173 to create only Normal-Mode Fragment Hyper-
links, then the “conventional URI”, i.e., the URI prefix
appended (if it exists) with the Conventional Fragment Iden-
tifier, is set 1175 as the value of the href attribute and the new
Fragment URI (URI prefix appended with the new Fragment
Identifier) is set as the maglink_href attribute value.

10

15

20

25

30

35

40

45

50

55

60

65

50

If it is not the user’s choice is to construct 1168 only
Safe-Mode Fragment Hyperlinks and a) the document
declares 1170 itself Magl.ink Friendly or b) the user agent is
configured 1173 to create only Normal-Mode Fragment
Hyperlinks, then the new Fragment URTis set 1145 as the href
attribute value and no maglink_href attribute value is created.

The generated HTML is placed 1185 in the clipboard for
type html, and the href attribute of the new HTML hyperlink
is placed in the clipboard for type text.

Embodiments have many permutations whereby function-
ality illustrated in the Figures is performed by different
devices and embodiments also have many combinations of
functionality whereby some functionality is performed and
other functionality is not performed. For example, in some
embodiments, sending the Common DOM Form to the URI
Service 1140 is not performed, which may affect the ability of
the service to recover the created Fragment Identifier. In some
embodiments, communication with a separate URI Service in
process 1100 is eliminated entirely; if any functionality of the
URI Service is performed, then the user agent performs that
functionality; for example, in some embodiments the user
agent creates a Surrogate URI having a sufficiently long
string to guarantee uniqueness. In some embodiments this is
achieved in a manner similar to the creation of GUIDs on
computation devices, where the GUID is probabilistically
presumed to be globally unique as a random or pseudo-ran-
dom number, and the GUID (in string form) is appended to a
URI to achieve uniqueness. This creation of Surrogates at the
user agent can be effective, for example, where the user agent
machine will also perform actions of the Redirect Service. In
other embodiments none of the functionality of the URI Ser-
vice is performed, but a version 1 Fragment URI is neverthe-
less created at the user agent, in particular without a Surrogate
URI and without a database for recovery. In other embodi-
ments the user agent uses its navigation history (described
below), enhanced by holding the Common DOM Form for
Fragment URIs, to provide URI Service style recovery from
the user agent machine acting as a URI Service for the URIs
it creates.

In some embodiments, a web site such as a blog acts as the
URI Service beneficially for creating Fragment Hyperlinks
that point to the domain of the blog. In some such embodi-
ments, the user agent executes JavaScript that is served out by
the site with its web pages, which performs user agent activi-
ties described in process 1100. All of the user agent activities
described in FIG. 11 can be performed by such JavaScript,
except for (in some user agents) inserting the resulting created
hyperlink into the clipboard of the machine, which may be
restricted for security reasons. In some such embodiments the
creation of'a Fragment Hyperlink is initiated by a user making
a selection and then pressing a button; for example, the button
could have the title “Create MagLink”. In some such embodi-
ments the Fragment Hyperlink is created as illustrated in F1G.
11 and then, instead of placing 1185 the hyperlink in the
clipboard, the Fragment Hyperlink, Fragment URI, or both is
displayed in the document that is already displayed 1130 for
creating the Fragment Hyperlink. The user may then copy the
Fragment Hyperlink or Fragment URI from that document
into the clipboard using the normal copy and paste facilities of
the user agent.

In this manner a web site, such as a blog or forum, may
beneficially support Fragment Hyperlink creation for its own
pages by including JavaScript for that purpose with its docu-
ment content. A major benefit of such embodiments is that
unmodified existing user agents can act according to embodi-
ments, provided they support JavaScript; note that most mod-
ern browsers support JavaScript. A major disadvantage is

US 9,356,574 B2

51

that, unless the user agent can perform the user agent actions
of FIG. 11 independently of document scripts, the user could
only create Fragment Hyperlinks to web pages that provide
such support from their scripts. Note that such embodiments
also beneficially provide JavaScript for other functionality of
these teachings, and in particular would beneficially interpret
Fragment URIs according to process 2600 of FIG. 26; since
the JavaScript would be from the web site itself, some
embodiments beneficially dispense with the notification and
timer processes of FIGS. 21 through 25 and instead directly
determine when the document is complete and process it
according to FIG. 26 at that time. In some such embodiments,
the user’s preferences for interpreting Fragment URIs
according to process 2600 are kept in a cookie at the user
agent; in other such embodiments they are set to a default set
of preferences.

In other embodiments, some web sites have a JavaScript
capability to create and process Fragment URIs as described
above, but they do so in cooperation with any user agent that
has this same capability built-in and in cooperation with the
same URI Service of the user agent embodiment. The
“Maglink Friendly” facility described above, as specified
2303 in FIG. 23, is used in some embodiments to communi-
cate the information that the user agent is itself an embodi-
ment to the JavaScript of displayed documents. In some such
embodiments the JavaScript from the web site only engages
in performing the functionality of these teachings when the
user agent has no such capability. In this way a blog or other
site can arrange for its users to enjoy benefits of embodiments
even if the user’s particular user agent does not comprise an
embodiment. Because the makers of some hardware plat-
forms restrict the incorporation of new technologies, and in
particular could restrict the incorporation of a user agent
embodiment, this combination would be beneficial to users of
such platforms. In addition, since there are so many user
agents to be modified, this combination could be beneficial to
users of user agent software that does not comprise an
embodiment, even if an embodiment were available for the
user’s platform.

FIG. 12 illustrates the process 1200 of creating a Fragment
Identifier using the document DOM and a selection. A Bool-
ean <use_alt>is set to its default value in some embodiments,
which indicates that alternative image text will be omitted. If
the user chooses 1202 to always treat image nodes as non-text
nodes, even when they have non-trivial image descriptive text
(e.g., the text of “alt’ attributes for HTML), or if the selection
contains no image having non-trivial descriptive text, then
proceed to the creation 1208 of an array of Text and VnT
nodes, where any DOM image nodes are mapped to VnT
nodes. Otherwise processing proceeds to further checking of
the user’s preferences 1204.

If the user chooses 1204 to always treat images having
non-trivial descriptive text as text nodes, then the Boolean
<use_alt>is set 1206 to this effect and processing proceeds to
the creation 1208 of an array of text and VnT nodes where
image nodes having non-trivial descriptive text are treated as
text nodes.

If the user chooses not 1204 to always treat images having
non-trivial descriptive text as text nodes, but instead chooses
to be asked “on the fly” whenever images have hidden alter-
native image text that could be included, then the user is
prompted to make this determination and processing waits
until he responds. (This check is done at this point in the logic
because the earlier checks 1202 guarantee that there is image
text that could be included.) If he responds in the negative
then processing proceeds with the creation 1208 of an array of
text and VnT nodes where all image nodes are VnT nodes. If

20

25

30

35

40

45

55

52

he responds positively, then the Boolean <use_alt>is set 1206
to this effect and processing proceeds to the creation 1208 of
an array of text and VnT nodes where image nodes having
non-trivial descriptive text are treated as text nodes.

In some embodiments, non-trivial text for images means
that the text does not collapse, in the Canonical Form, to the
empty string (or to whitespace, in alternative embodiments
that do not entirely collapse whitespace). In alternate embodi-
ments, if an ‘alt’ attribute collapses to a string with a length
that is less than some configured number of code units, then it
is considered to be trivial.)

A derived node array containing text and VnT nodes is
created 1208 from the document’s DOM; nodes appear in the
same order as in the DOM. (Although the DOM is typically a
tree, it has an order from left to right, with a parent node
appearing before any of its descendents.) In some embodi-
ments, when applied to an HTML DOM, only text and image
nodes are copied to the node array; depending on the Boolean
<use_alt>, some image nodes may be treated as text nodes. If
a particular DOM range contains no image nodes with non-
trivial text and the constructed prefix and suffix for that range
also contain no image nodes with non-trivial text, then the
range in the Fragment Identifier is marked for processing
without using image text. (This marking allows such ranges to
beutilized and processed without including image text, which
makes them more robust to some types of changes.) If the
Boolean <use_alt>requires inclusion of image text, process-
ing checks the generated canonical prefix, suffix and target for
actual mappings to image nodes having non-trivial text; if
there are none then the Fragment Identifier range’s Boolean
governing image text inclusion is set to false, but if there is
image text to be included then it is set to true.

The ranges of the DOM selection 1208 are translated into
ranges in the derived node array. The derived node array uses
the same range identification scheme as the Common DOM
Form, which was described earlier. In particular, range end-
points in node arrays identify objects (i.e., nodes or code
units) instead of gaps or positions between objects as is done
for HTML DOM ranges.

This translation is done by finding the <node, position> in
the derived node array that corresponds to each DOM range
boundary. The <node, position> that corresponds to a right
DOM range boundary is that <node, position> pair in the
node array that is furthest to the right amongst those that are
to the left of the right boundary in the DOM. The <node,
position> that corresponds to a left DOM range boundary is
that <node, position> pair in the node array that is furthest to
the left amongst those that are to the right of the left boundary
in the DOM.

Given this approach, the node array will always have right
and left range endpoints. When the document DOM selection
is translated into node array ranges and a range in the node
array is empty (e.g., when a video is the sole object in the
range and an embodiment is chosen that does not include
video nodes as VnT nodes), the definition given in the previ-
ous paragraph identifies both a left and a right range endpoint.
However, they will be crossed. The left endpoint will be to the
right of the right endpoint as described in more detail earlier.

Implementations can use ordering functions provided by
browsers, whereby a function returns a Boolean indicating
the order relationship between two DOM nodes. Not all
browsers with such a function call it by the same name, but
most modern browsers have the capability. If such a capabil-
ity exists in the browser or editing software, then it is used to
perform a binary search for the position in the node array. If
there is no such ordering function, then a traversal of the
document DOM is used whereby each node in the DOM

US 9,356,574 B2

53

traversal is compared against the next node in the derived
array (starting with the first). If the nodes are the same then the
positions in both the derived node array and DOM advance; if
not then only the position in the DOM advances. The left
endpoint is the first node array object encountered after the
left range boundary in the DOM is found. The right endpoint
is the node array object encountered just prior to locating the

DOM right range boundary. Since not all DOM objects are

included in the derived node array, the left endpoint can be to

the right of the right endpoint. This circumstance indicates
that the range is only a position having no node or code unit,
as was discussed above.

It is somewhat common practice to use transparent or oth-
erwise invisible small images (typically single pixel) that are
interleaved with various whitespace characters to achieve
visual uniformity between user agent displays and to achieve
a greater precision in spacing between text or text and a
normally visible image. This usage complicates the represen-
tation of ranges in Fragment Identifiers and establishing
ranges with boundaries within such a sequence. However,
such a composite ‘space’ is visually a single unit to the reader
so we beneficially treat it as such so long as it remains visually
a single unit. An additional complication is that display and
editing software may insert whitespace text nodes (that have
no counterpart in the HTML source) into the DOM, or may
insert whitespace in existing nodes, and they do this without
any uniformity between software products. Thus we take
advantage of the generally meaningless nature of an addi-
tional space here or there added into HTML source or that
may be treated differently by different user agent software.
For these and other reasons we have these rules:

1. If traversing an array of nodes and counting code units
(characters or parts of characters) to establish an offset:

a) any amount of contiguous whitespace, even if it spans

across node boundaries, is counted as a single code unit,

b) VnT nodes are ignored, and

¢) stopping a traversal within a character is forbidden, i.e.,

a range boundary should not be between code units of a
character and, if it is improperly found to be so, then it is
extended to include whole characters.

2. If traversing the derived array of nodes and counting VnT
nodes to establish an offset, then Text nodes containing
only code units that collapse to the empty string are
ignored. In addition, if using an implementation that does
not collapse all whitespace, then text nodes that are
whitespace or that collapse to only whitespace are ignored.
The Canonical Form Transform is extended and applied

1208 to the derived node array text to arrive at the Canonical
Form of the derived node array. In this extension every code
unit in the textual Canonical Form is mapped to the position
in the derived array from whence it or its corresponding code
unit (e.g., an upper case version of a character) came. For
ligature characters in the array there are multiple code units in
the Canonical Form that map to that one ligature character in
the array.

While not used in all embodiments, expansions of multi-
character strings, like abbreviations and acronyms, from the
node array to the Canonical Form, result in mappings from
every character of the expanded string in the Canonical Form
to the entire substring containing the abbreviation or acronym
in the node array. This has a side effect of making it impos-
sible for a Fragment Identifier to select only part of an
expanded abbreviation or acronym. While semantically par-
tial selection of an expanded form is not a problem, in that it
could reasonably occur; it could be an issue for an unex-
panded abbreviation that underlies the partial selection. A
semantic equivalency is assumed between the unexpanded

10

15

20

25

30

35

40

45

50

55

60

65

54

and expanded forms of these multi-character strings. It is
difficult to tell exactly what part or parts of the abbreviation
correspond to the partial selection, or what meanings they
convey. In such a case the presumption of semantic equiva-
lency could be erroneous.

In some embodiments this is dealt with by automatically
determining that an unexpanded acronym or abbreviation is
itself the semantic issue when it is partially selected. Other-
wise, in these embodiments the user can adjust configuration
to select non-expansion of acronyms and abbreviations in
cases when he feels the selected acronyms or abbreviations
should not be expanded. This is beneficial because the differ-
ence is determined in the mind of the user creating the Frag-
ment Identifier, since it cannot be discerned based solely on
the selection. Because this adds complexity to the use and
understanding of products, other embodiments do not ini-
tially have such a feature. When users in general become
more comfortable with tools built upon these embodiments,
i.e., when there is a body of ‘expert’ users of such tools, then
the introduction of such capabilities becomes feasible from a
user perspective, and embodiments that do not provide such
flexibility to the user will change accordingly. When the user
chooses non-expansion of acronyms and abbreviations, his
product will essentially behave like embodiments that do not
provide such flexibility.

Abbreviations and especially acronym expansions are not
unique even within a single language, so the application of
such expansions requires contextual information. In these
alternative embodiments, one or more namespaces are
selected as context, with priority in case of conflict between
namespaces. Each namespace is identified by a URI (as XML
namespaces are identified today). However, unlike simple
XML namespace names, the URI of these namespaces mean-
ingfully identifies a resource having the expansions, which
are downloadable using the URI; i.e., the expansions gov-
erned by a namespace are available across the Internet. Under
some circumstances they are automatically downloaded. In
these alternative embodiments, Fragment Identifiers identify
the applicable namespaces. There will be, for example, a
standard electrical engineering English namespace, in which
the acronym ‘Hz.” expands to ‘Hertz’ using that namespace’
when generating the Canonical Form. The use of such a
Fragment Identifier requires either a local copy of the
namespace information, which will be cached by alternative
embodiments that have encountered that namespace previ-
ously, or it will be freely downloaded to embodiments having
access to the Internet.

Depending on the embodiment in use, a Canonical Form is
created 1208. Then for each range 1210,1215 of the selection,
execute a loop of actions as follows:

Find 1220 the highest index (farthest to the right) code unit
in the Canonical Form that is before (is to the left of) all code
units that either map into the range in the derived array or map
after it. Use an imaginary code unit at the left end (beginning)
of the Canonical Form for this purpose when there is no
canonical code unit that precedes those that map into or map
after the range. In the Canonical Form this code unit is called
the left edge code unit; its index is its position in the Canonical
Form, or -1 if it falls outside of the Canonical Form.

Find 1220 the lowest index (farthest to the left) code unit in
the Canonical Form that follows (is to the right of) all code
units that map into the range in the derived array or map
before it. Use an imaginary code unit at the right end of the
Canonical Form for this purpose when there is no canonical
code unit that follows those that map into or map before the
range. In the Canonical Form this code unit is called the right

US 9,356,574 B2

55

edge code unit; its index is its position in the Canonical Form,
or -1 if it falls outside of the Canonical Form.

Find a unique Canonical Form prefix ending on the left
edge code unit 1225 by applying the process 1300 of FIG. 13.
Find a unique Canonical Form suffix beginning on the right
edge code unit 1230 by applying the process 1300 of FIG. 13.
Note that the uniqueness is achieved by successively length-
ening the prefix or suffix candidates, and the hash value is not
guaranteed to itself be unique if the edge of the Canonical
Form is encountered prior to achieving uniqueness by length-
ening the string. In fact, a canonical prefix or suffix can be as
short as the empty string, in which case its hash value matches
at every possible position. Nevertheless, if a prefix hash or
suffix hash is not unique within a Canonical Form then its
position in the (unaltered) Canonical Form is uniquely
known—the prefix or suffix would have either been extended
until its hash is unique, or until the edge of the Canonical
Form. Such a prefix positioned at the first match for its hash,
and such a suffix is positioned at the last match for its hash. In
unaltered Canonical Forms, an empty prefix maps uniquely to
a position prior to the derived node array and an empty suffix
maps uniquely to a position after the node array.

Prefix or suffix uniqueness that is achieved by successively
lengthening and either finding a string with a unique hash or
finding the edge of the Canonical Form are only dependable
at the edges for unaltered documents. In an altered document,
a non-unique hash cannot be assumed to indicate a match at
the edge of the Canonical Form. For example, a canonical
prefix may be empty in a Fragment Identifier and the docu-
ment could subsequently be altered by adding text before the
earlier beginning of the document. While it is possible to
know that the document has been altered, in this situation the
position of the intended content within the document, just
based on the prefix, is unknown. It is therefore necessary to
compare possible match positions against target and suffix
match positions in Canonical Forms to find the content.

For example, if the prefix and target are empty, then one
knows that the suffix should preferentially be the first suffix
hash match position in the Canonical Form. This same rea-
soning holds for a non-empty target and suffix pair, if the
prefix is empty or short and matches in multiple locations.

In altered documents it is also useful to have some idea of
whether amatch is toward the front of the document or toward
the end of the document. If a prefix fails to match anywhere in
an altered document, and the target and suffix hash matches
line up together in multiple locations, then some implemen-
tations resolve this ambiguity by having Boolean values that
indicate whether to prefer such matches that are earlier or
later in the document. Based on the above discussion, it is
unnecessary to use such Boolean values unless the Canonical
Form has been altered. To know whether or not it was altered,
we include a hash of the entire Canonical Form in Fragment
Identifiers.

The definition of Canonical Target is the text in the Canoni-
cal Form between the left edge code unit and the right edge
code unit; the edge code units are not included. A hash is
computed 1235 over the Canonical Target, then a rolling
n-gram hash pass is done over the Canonical Form using the
length of the Canonical Target (n), its hash value, and the
Canonical Form as inputs to the rolling n-gram hash process
200 of FIG. 2. Since the Canonical Target is fixed in length
based on the range, it may not be unique and no adjustments
in length are made to achieve uniqueness. Nevertheless, a
search pass is made over the full Canonical Form to determine
the number of high order bits required to distinguish it from
all like-length substrings of the Canonical Form that have
different hash values.

10

15

20

25

30

35

40

45

50

55

60

65

56

Establish 1237 the number of bits required for content
hashes (the value of HashWidth). First obtain the maximum
of'the required bits for the canonical prefix, suffix, and target;
then add 6 and round the result up to the next multiple of 6.
This use of a multiple of 6 aligns the representation, where 6
bits are expressed by each Fragment Identifier character.

Because it may be counterintuitive we note that a hash that
matches in many places in a Canonical Form typically
requires fewer bits to distinguish when determined in accor-
dance with the process 200 of FIG. 2. In the extreme case of
a zero length string, which matches everywhere, the number
of'bits required to distinguish its hash value is zero since it is
not distinguishable from any other zero length string. A
length of one code unit on average uses about the same
number of bits to distinguish its hash as are used to count the
code units appearing in the Canonical Form. Because of the
high quality of the hash function including its fully random-
ized characteristic, the variance in the number of bits required
is also low.

The two offsets and their types are determined 1240 in
accordance with the process 1400 of FIG. 14, which requires
as input the node array, the range in the node array, the left
edge code unit index, the index of Canonical Target’s first
code unit (or -1 if the Canonical Target is the empty string),
the index of the Canonical Target’s last code unit (or -1 if the
Canonical Target is the empty string), the right edge code unit
index, and the Canonical Form. The left and right offsets with
their respective types are returned.

The Canonical Target is nominally partitioned 1245 into
equal sized segments; the last may be a remainder of smaller
size than the rest. The number of segments is configurable,
and the implementation can accept any number, but the
default is 15 segments plus the remainder. The size of the
segments is determined by dividing the nominal number of
segments (by default 15) into the length of the Canonical
Target in code units. The segment size is encoded into Frag-
ment Identifiers so that any number of segments can be used.
If the result is less than 1 code unit per segment, then seg-
ments of 1 code unit are used. If the Canonical Target is less
than 4 code units in length, no partitioned representation is
used; this is indicated by encoding the integer for the length of
each segment as zero, and then dropping the integer encoding
for the number of bits and the bit array from the encoding. The
result is the partitioned Canonical Target. The hash is calcu-
lated for each segment of the partitioned Canonical Target.
The high order (first) m bits from each hash are selected and
are concatenated into a bit array, preserving the order of the
segments in the range. In the implementation being dis-
cussed, the value m is set to 16. As with the number of
segments this is configurable and the implementation (when
interpreting a Fragment Identifier) accepts any value for m.
The value of m is encoded into each Fragment Identifier.

This completes the processing for the current range (except
for encoding the results into the Fragment Identifier). If there
are one or more 1210 unprocessed ranges then the processing
continues from the point of the check for unprocessed ranges,
described above.

Ifthere are no more unprocessed ranges, then 1250 the URI
for the present document is examined for Fragment Identifi-
ers of the user agent’s embodiment. The check is thorough
and involves a complete parsing of fragment identifiers
before they are determined to be of the embodiment. Any
Fragment Identifiers of the embodiment that are found are
excised from the URI. This removal can result in separated
pieces of the fragment identifier being re-concatenated. Every
character pair ‘#7’ in the URI is found, and parsing begins
from that point. Parsing can fail at any point where the form

US 9,356,574 B2

57

of a fragment identifier fails to parse according to the encod-
ing used (which is implementation specific). The parsing of
the part beginning with ‘#7” is performed according to the
encoding of the Fragment Identifier. While any encoding may
be used, the parsing should be in accordance with that encod-
ing to ensure that only valid Fragment Identifiers of the par-
ticular implementation (of an embodiment) are removed.
Then every Conventional Fragment Identifier, if any, that
positively identifies a specific target anchor in the document
is removed. The result after any such removals is the URI
prefix, to which we will later append the newly created Frag-
ment Identifier. The hash of the URI prefix is calculated. A
time stamp for the current time (time of Fragment Identifier
creation) is created in the form of an integer that contains the
number of Coordinated Universal Time seconds since Jan. 1,
1601.

When preparing a URI prefix for a Fragment Identifier,
removing an old Conventional Fragment Identifier may not
be safe since its full purpose may not be known. For example,
removing a Conventional Fragment Identifier may cause the
content itself to change and the intended text identified by a
Fragment Identifier might not even be present in the resulting
content. Such a determination can be achieved by experiment,
i.e., by removing Conventional Fragment Identifiers and see-
ing what happens when the resulting URI is activated. In
another embodiment, such an experiment is performed in an
automated way to determine which fragment identifier are
true fragment identifier according to RFC 3986 and can be
safely removed, and which are in contrast used in effect to
identify the resource itself. The experiment is performed after
first removing any Fragment Identifiers of the embodiment,
then removing additional Conventional Fragment Identifiers
one at a time, activating the URI, and comparing the resulting
content. If the resulting content changes then the removed
Conventional Fragment Identifier is returned. This is repeated
until the experiment has been performed for all of the Con-
ventional Fragment Identifiers. The resulting URI is, in this
alternative embodiment, the URI prefix.

In another embodiment, Conventional Fragment Identifi-
ers (i.e., that are not of an embodiment) are not removed at all
prior to isolating the URI prefix. It is possible for a Conven-
tional Fragment Identifier to identify an anchor of the docu-
ment, and in this way conform to RFC 3986, but even if it is
used as the RFC intended there is nothing that prevents the
same Conventional Fragment Identifier from also being used
by content scripts to determine what page content to display.
While this is unlikely it remains possible and it is, at least in
principle, only an assumption that a Conventional Fragment
Identifier will not be used in this manner. Therefore, in an
alternative embodiment, only Fragment Identifiers of the
embodiment are removed and the others remain.

Finally 1255 the Fragment Identifier is created. The Frag-
ment Identifier in this example implementation of an embodi-
ment begins ‘#7°. The ‘7’ character is for compatibility with
unrelated software that may be configured to use these Frag-
ment Identifiers in isolation, where it is simpler if the identi-
fiers are guaranteed to begin with an alphabetical character.
Thus, in the implementation-specific choice made in the
examples of this description, Fragment Identifiers begin with
a ‘7’, immediately after the standard URI delimiter V. Then,
using an implementation specific encoding, the information
is encoded into the Fragment Identifier. In the some embodi-
ments, this is a dense encoding that does not involve URI
escaped characters. For example, integers could use a vari-
able length sign-magnitude encoding that grows in size as
necessary to represent integers of larger magnitude. This
creates a dense representation that does not waste space for

10

15

20

25

30

35

40

45

50

55

60

65

58

small integers. An example implementation has a Base64
encoding using the standard English alphabet (52 upper and
lower case characters), the digits (0-9), the underbar (*_"), and
dash (“-*), which uses the same character set and encoding
order presented in RFC 4648, “The Base 16, Base 32, and
Base 64 Data Encodings”, for URL-safe encodings. This
character set beneficially avoids requirements to escape these
characters in any standard URI context, which in turn benefi-
cially avoids lengthening the Fragment Identifiers before
transmission.

In an example implementation of an embodiment, a struc-
ture is populated with the values of the elements to be
encoded, and from that instance of a structure a standard
ASN.1 encoding is created as specified in [ITU-T Rec. X.680-
X.683, using canonical unaligned PER (Packed Encoding
Rules) as specified in ITU-T Rec. X.691. The unaligned
aspect achieves the highest compaction, and the canonical
version achieves precisely the same encoding for the same
data under all circumstances. As will be appreciated by those
skilled in the art, by its nature and in accordance with the
purposes for which the ASN-1 and PER standards were cre-
ated many years ago, such an encoding is dense. Density is a
relative term that could be quantified in a continuum, and
other implementations and embodiments may have more or
less density than that provided by ASN-1 PER encodings,
with varying effects. Density achieves shorter Fragment Iden-
tifiers, and encodings that are more or less dense only affect
the “shorter identifier” benefit of an embodiment. Moreover,
those skilled in the art will appreciate that reasonably dense
encodings may be achieved in a multitude of ways and that
small proportional differences in Fragment Identifier length
are typically of little consequence. While it is possible for
those skilled in the art to hand-optimize such an encoding
based on the exact structure and information to be encoded,
and thereby achieve an even more compact encoding, the
advantages of a standards based encoding include ease of
implementation.

In this example, the resulting ASN.1 canonical PER encod-
ing is then further encoded into the chosen base-64 encoding.
This can be efficiently done using a lookup table that converts
each 6-bits of the ASN-1 encoding into a character of the
base-64 character set. Again there are a large number of
choices made by an implementation; even with restricting the
choice for embodiments to the base-64 character set
described above, every possible order of those characters in
the lookup table represents an implementation detail that
maps ASN-1 encodings to different character strings, and if it
were done differently across a distributed system the encod-
ings would be inconsistent and incompatible. This example
implementation uses a modified version of the Base64 char-
acter encoding of RFC 4648, section “5. Base64 Encoding
with URL and File Name Safe Alphabet.” That standard
encoding is modified in some embodiments by omitting the
equals (=) character padding at the end, which modification
generally shortens the encoding.

The following information is encoded:

1. The two character string “‘#7

2. An integer version number identifying this particular Frag-
ment Identifier version. In a concrete implementation of an
embodiment, this number in effect identifies the encoding
used. This specification describes two such versions. How-
ever, this element supports any number of versions since an
arbitrary integer is encoded to identify the version.

3. An integer representing the number of Coordinated Uni-
versal Time (UTC) seconds since Jan. 1, 1601, when this

Fragment Identifier was created.

US 9,356,574 B2

59

4. A bit array of the high order bits of the hash of the URI
prefix. This array uses 30 bits in this example implemen-
tation.

5. An integer representing the length in code units of the
specially created Alternative Canonical Form (as described
previously) used for calculating the Common DOM Form
hash for the whole document.

6. A bit array of the high order bits of the hash of the Common
DOM Form of the document from which this Fragment
Identifier was made. The number of bits for this hash is 42
in this example implementation.

7.A Boolean that indicates whether the document is MaglLink
Friendly. In some embodiments, this is determined by
examining the document’s header META tags. However,
this Boolean would usefully be set in any embodiment in
circumstances where document scripts are known to per-
mit multiple fragment identifiers, and behave identically
when the scripts do not have processing rules specific to
one or more of them. I.e., if scripts do not ‘understand’ a
fragment identifier of some kind, they ignore it.

8. An integer representing the number of ranges in the Frag-
ment Identifier.

9. A sequence of range encodings, which consist of:

a) A Boolean that indicates whether this range was created
by a search engine for search results. This is set to true
only by search engines serving out search results with
Fragment Hyperlinks.

b) An “images as text nodes” Boolean, which indicates that
at least one image with non-trivial alternative text (‘alt’
attribute in HTML) contributed to the string content.

¢) A Boolean indicating whether the canonical prefix was
closer to the front of the Canonical Form or its rear.

d) A Boolean indicating whether the canonical suffix was
closer to the front of the Canonical Form or its rear.

e) A Boolean indicating whether the Canonical Target was
closer to the front of the Canonical Form or its rear.

f) A Boolean indicating whether the left offset is in VnT
nodes or in code units.

g) A Boolean indicating whether the right offset is in VnT
nodes or in code units.

h) An integer ‘Hash Width’, which indicates how many bits
of the hash values for the canonical prefix, suffix, and
target are represented in the encoding.

i) An integer that indicates the length of the canonical
prefix in code units.

j)An integer that indicates the length of the canonical suffix
in code units.

k) An integer that indicates the length of the Canonical
Target in code units.

1) An integer that has the left offset value.

m) An integer that has the right offset value.

n) A bit array of the high order bits of the canonical prefix
hash. The number of bits is HashWidth.

0) A bit array of the high order bits of the canonical suffix
hash. The number of bits is HashWidth.

p) A bit array of the high order bits of the Canonical Target
hash. The number of bits is HashWidth.

q) An integer indicating the length of a segment in the
partitioned Canonical Target.

r) An integer Partitioned Hash Width indicating the width,
in bits, of the hash values for each segment in the parti-
tioned Canonical Target. By default this value is 12 in
this example implementation.

s) A bit array of the high order bits of the hashes of the
segments of the partitioned Canonical Target, in
sequence. The number of bits for each segment is Parti-

10

15

20

25

30

35

40

45

50

55

60

65

60

tionedHashWidth. The number of segments is the length
of a segment divided into the length of the Canonical
Target, rounded up.

10. A bit array of the high order bits of the hash of the
Fragment Identifier’s encoding. The hash is computed
beginning with the ‘Z’, not the ‘#’. Encodings of elements
1 through 9 above are hashed; i.e., this element itself is not
included in the hash. The number of bits included in this
hash in some embodiments is 30 and is fixed. Thus, this
element is not part of the ASN.1 encoding, but is the hash
of the ASN.1 encoding, and is directly converted to 5
characters, each representing 6-bit pieces of the hash, using
the same Base64 encoding.

The new Fragment Identifier is returned 1260.

FIG. 13 illustrates the process 1300 of calculating the
prefix and suffix of a range, how uniqueness is established for
aprefix and suffix, and the determination of the number of bits
to be used in the prefix and suffix hashes. The input 1305
consists of the position of the left edge code unit (resp. right
edge code unit) in the Canonical Form, along with the
Canonical Form. These code units identify the last code unit
excluded prior to the range (first code unit excluded following
the range). By default in some embodiments we set 1310 the
initial value of n to 5, which represents the number of code
units in an n-gram.

Enter a loop that tests 1315 if there are n code units possible
in the n-gram. For a prefix, see if there are n code units prior
to the Canonical Target, including the left edge code unit. For
a suffix see if there are n code units to the right in the Canoni-
cal Form beginning with the right edge code unit. If n is too
large, then make n 1320 equal to the maximum possible.
Calculate the hash of the prefix or suffix 1325 over the n code
units adjacent to the Canonical Target. Then, using the prefix
or suffix hash as the <DistHash> input to the process 200 of
FIG. 2, calculate a rolling n-gram hash across the entire
Canonical Form, searching for matches 1330. Concurrently
calculate the number of hash bits required to distinguish the
input hash from other n-gram hashes according to the process
200 of FIG. 2.

If the search process 200 indicates that there was only one
hash match 1335, or if there are no additional code units 1340
that may be added to the prefix (resp. suffix), then the hash
value of the prefix (resp. suffix) is returned 1355 with its
length (n) and the number of bits required to distinguish it
from other n-grams in the Canonical Form. Otherwise,
double the value of n 1350 and loop back to test 1315 if there
are n code units possible in the n-gram.

There are many ways to find a unique prefix and unique
suffix. Asymptotically efficient (i.e., highly efficient in the
worst case on large data sets) techniques are known in the art
for the k-mismatch problem that are based on the widely
studied uses of generalized suffix trees. Nevertheless, while
highly efficient asymptotically in the worst case, they are not
as efficient on average as the process 1300 of FIG. 13. In
alternative embodiments, generalized suffix tree techniques
are used to find the minimum length of prefix or suffix to
achieve uniqueness, and then the n-gram hash is run as illus-
trated in FIG. 13 to find the number of bits required. This is,
on average, less efficient than the process 1300 of FIG. 13,
which is considerably faster most of the time on real data.
Other alternative embodiments use this process 1300 first, for
a few iterations, and then switch over to a generalized suffix
tree method if a unique prefix or suffix has not yet been found.

By way of reminder, all code units in the Canonical Form
directly map to the positions of code units in node array Text
nodes or sometimes Alt nodes. Adjacent Canonical Form
code units might map to adjacent characters in a node array

US 9,356,574 B2

61

Text node. However, even though adjacent Canonical Form
code units might map to the same node, their corresponding
characters can be separated by whitespace or punctuation that
is not included in the Canonical Form. Adjacent Canonical
Form code units can map to different nodes in the node array
and these can be separated by intervening nodes (see FIG.
53), possibly with considerable content. The node array
might begin with non-text nodes or text nodes with only
punctuation or whitespace, prior to the character mapped to
by the Canonical Form’s first code unit. An analogous situa-
tion can happen after the last Canonical Form code unit.

As described earlier, the process of converting the range in
a document DOM instance to a range in a corresponding
Common DOM Form involves creation of a version 1 Frag-
ment Identifier; part of creating this requires finding the ends
of the range in the node array relative to characters that are
mapped to by Canonical Form code units, as described in
discussions of offset tables 580, 687/688, 780, 880 and 980 of
FIGS. 5, 6,7, 8 and 9, respectively. An end of the range might
directly map to a code unit in the Canonical Form, in which
case no additional work is required to locate the correspond-
ing position in the node array (see F1G. 5). The beginning and
end of the range can fall between a pair of adjacent Canonical
Form code units, in which case the Canonical Target will be
null (see FIGS. 7 and 8). One or both ends of the range can fall
prior to the first or after the last node array characters mapped
to by the Canonical Form (see FIG. 9). There are several
scenarios, but one “worst case” occurs when the entire docu-
ment only contains images, and the user selected one of the
images. In this case the Canonical Form, canonical prefix,
canonical suffix and Canonical Target are all empty.

FIGS. 14, 15 and 16 describe processes that work together
to determine the values and types of offsets for the ends of a
range in the node array relative to code units mapped to by
Canonical Form code units. These figures refer to “working
position quadruples”. Each working position quadruple con-
tains two <node, position> pairs that are mapped to by adja-
cent Canonical Form code units; the two <node, position>
pairs in each working position quadruple brackets (provides
inclusive bounds in the form of objects for) one end of the
range.

FIG. 14 illustrates a process 1400 that determines the type
and value of offsets in the node array for a range, relative to
code units mapped by Canonical Form code units. Its inputs
1402 are the node array, the range of the node array, the
Canonical Form with the left edge code unit index, first code
unit index, last code unit index and right edge code unit index
in the Canonical Form. Note that the first and last code units’
indices, in conjunction with the Canonical Form, define the
Canonical Target.

Define pairs that map each of the Canonical Form code unit
indices 1403 into the node array, where each pair consists of
a node and a position within that node as appropriate. If an
index is -1, then the corresponding pair is <null, 0>. The
mappings are:

Map the left edge code unit index to <left_edge node,

left_edge_position>

Map the first code unit index to <first_node, first_position>

Map the last code unit index to <last_node, last_position>

Map the right edge code unit index to <right_edge_node,

right_edge_position>

This procedure uses a left working position quadruple and
a right working position quadruple to determine the offsets of
the left and right ends of the range, respectively. The pairs in
the left working position quadruple usually consist of the
code unit positions mapped by of the last code unit of the
canonical prefix (the last code unit that is excluded prior to the

10

15

20

25

30

35

40

45

50

55

60

65

62

range), and the first code unit of the Canonical Target. Pairs in
the right working position quadruple usually consist of the
code unit positions in the node array mapped to by the last
code unit of the Canonical Target and the first code unit of the
canonical suffix (the first code unit excluded following the
range).

If there is an empty prefix or suffix, the left_edge_code-
_unit_index or the right_edge_code_unit_index, respec-
tively, will be —1 upon entry. In this case, the “null” node
value and position 0 is used to indicate imaginary nodes and
code units outside of the ends of the node array. Imaginary
text nodes (i.e., a node in the node array that has no counter-
part in the DOM) are used before the beginning of and after
the end of the node array so that there are endpoints for the
prefix and suffix that do not imply exclusion of any object
from the range that is also in the DOM. The imaginary node
and code unit on the left is “mapped” by an empty canonical
prefix, and the imaginary node and code unit on the right is
“mapped” by an empty canonical suffix.

The contents of left and right working position quadruples
will be set somewhat differently when the Canonical Target is
empty. Both working position quadruples will have identical
content: the first <node, position> pair of each is mapped
from the last code unit of the canonical prefix, and the second
<node, position> pair is mapped from the first code unit of the
canonical suffix.

Once the node array positions corresponding to the ends of
the canonical prefix, canonical suftix and Canonical Target
are mapped, offset types and offset values are computed.

If the Canonical Target is the empty string 1405, then set
both the right and left working position quadruples 1425 to
the same values: <left_edge_node, left_edge_position, right-
_edge_node, right_edge_position>.

Ifthe Canonical Target is not the empty string 1405, set the
left working position quadruple 1410 to <left_edge_node,
left_edge_position, first_node, first_position>. Next set the
right working position quadruple 1420 to <last_node, last-
_position, right_edge_node, right_edge_position>.

The node array, the range in the node array and the working
position quadruples are used to calculate the offsets to the
ends of the range in the node array and the type of each. First
determine the type and value of the left offset 1430, as is
shown in process 1500 of FIG. 15. Then determine the type
and value of the right offset 1435, which is shown in process
1600 of FIG. 16. Return the types and values of the left and
right offsets 1440.

Procedures presented in FIGS. 15 and 16 each determine
an offset type and value for an endpoint of the range. FIG. 15
determines the type and offset of the first object, or left end-
point, of the range; FIG. 16 determines an offset type and
value for the last object, or right endpoint. In some embodi-
ments, each endpoint is found relative to the closest of two
positions that effectively bracket it (i.e., inclusively bound it),
the two <node, position> pairs of a working position qua-
druple. An end of the range can be specified relative to either
position. If the end of the range is calculated relative to the
object to its left, the offset from the end of the range to the end
of the object is positive; if the end of the range is calculated
relative to the object to its right, the offset is negative.

A situation can arise where one of the two bracketing
objects coincides with the end of the range. In this case the
offset from the bracketing object to the endpoint is zero. In
order to indicate whether the left or right bracketing object
was used, +0 is used to represent the first or leftmost object
and -0 is used to indicate the second, or rightmost, object.

Occasionally the range is empty. This situation was first
considered during the discussion of 1208 in FIG. 12, in the

US 9,356,574 B2

63

section about how ranges in the DOM are translated into
ranges in the derived node array. In this case the left and right
edges of the range cross over each other, so that the left edge
of the range is to the right of the right edge or the range. This
cross-over indicates that the range became a position between
two specific objects (i.e., the range is a position between two
adjacent objects that does not contain either of the objects).

FIG. 15 illustrates the process 1500 of determining the type
and value of a left offset. Inputs 1505 to this process include
the node array, the range in the node array and the left working
position quadruple, as defined in process 1400. Assign the
names 1510 left_node, left_offset, right_node and right_off-
set to the members of the left working position quadruple, in
that order.

The first step is to determine 1520 whether the left range
endpointis aVnT node. Ifitis aVnT node, then the type of the
offsetis VnT 1525. For the negative offset value calculate the
number of VnT nodes between the right_node and the left
endpoint of the range, including the left endpoint. Do not
count text nodes. If right_node is NULL then begin counting
with the rightmost node of the node array.

Next establish the positive offset value 1530. Calculate the
number of VnT nodes between the left_ node and the left
endpoint of the range, including the left endpoint. Do not
count text nodes. If left_node is NULL then begin counting
with the leftmost node of the node array.

If the left range endpoint is not a VnT node 1520, then the
type of the offset is Text 1535. To determine the negative
offset value, calculate the number of code units between the
right_node, right_offset position and the range’s left endpoint
node and offset position. For each new code unit encountered,
increment the count by 1. When the text includes contiguous
whitespace, only count the first encountered whitespace code
unit of the contiguous whitespace, as discussed for FIG. 12,
item 1208 above, in the rule that addresses traversing an array
of'nodes and counting code units. Do not count VnT nodes. If
right_node is NULL then begin counting with the rightmost
code unit of the node array.

Next establish the positive offset value 1540. Calculate the
number of code units between the left_node, left_offset posi-
tion and the range’s left endpoint node and offset position. For
each new code unit encountered, increment the count by 1.
When the text includes contiguous whitespace, only count the
first whitespace code unit, as discussed above. Do not count
VnT nodes. If left_node is NULL then count beginning with
the leftmost code unit of the node array.

Determine whether to return the positive or negative offset
1545. Compare the magnitudes of the positive and the nega-
tive offset values. If the magnitude of the positive offset value
less than or equal to that of the negative offset value, return the
positive offset value 1550 together with its type. Otherwise
return the negative offset value 1555 and its type.

FIG. 16 illustrates the process 1600 of determining the type
and value of a right offset. Inputs 1605 to this process include
the node array, the range in the node array and the right
working position quadruple, as defined in process 1400.
Assign the names 1610 left_node, left_offset, right_node and
right_offset to the members of the right working position
quadruple, in that order.

First determine 1620 whether the right range endpoint is a
VnT node. Ifit is, then the type of the offset is VnT 1625. For
the negative offset value calculate the number of VnT nodes
between the right_node and the right endpoint of the range,
including the right endpoint in the count. Do not count text
nodes. If right_node is NULL then begin counting with the
rightmost node in the array.

15

20

25

40

45

55

60

64

Next establish the positive offset value 1630. Calculate the
number of VnT nodes between the left_node and the right
endpoint of the range, including the right endpoint. Do not
count text nodes. If left_node is NULL start the count begin-
ning with the leftmost node in the node array.

Ifthe right range endpoint is not a VnT node 1620, then the
type of the offset is Text 1635. To determine the negative
offset value, calculate the number of code units between the
right_node, right_offset position and the range’s right end-
point node and offset position. For each new code unit
encountered, increment the count by 1. When the text
includes contiguous whitespace, only count the first encoun-
tered whitespace code unit of the contiguous whitespace, as
discussed for FIG. 12, item 1208 above, in the rule that
addresses traversing an array of nodes and counting code
units. Do not count VnT nodes. If right_node is NULL then
start the count beginning with the rightmost code unit of the
node array.

Next establish the positive offset value 1640. Calculate the
number of code units between the left_node, left_offset posi-
tion and the range’s right endpoint node and offset position.
For each new code unit encountered, increment the count by
1. When the text includes contiguous whitespace, only count
the first whitespace code unit, as discussed above. Do not
count VnT nodes. If left_node is NULL then begin counting
with the leftmost code unit of the node array.

Determine whether to return the positive or negative offset
1645. Compare the magnitudes of the positive and the nega-
tive offset values. If the magnitude of the positive offset value
is less than or equal to that of the negative offset value, return
the positive offset value 1650 together with its type. Other-
wise return the negative offset value 1655 and its type.

This completes the detailed description of creating version
1 Fragment Identifiers. In some cases it is useful to create a
Fragment Identifier when only part of a document is avail-
able. In some such cases only the target string is available and
no other information is known about the document; Fragment
Identifiers created according to some embodiments, when the
full document is not available (e.g., only a target string is
available) are called version 2 Fragment Identifiers. Herein
we call URIs and hyperlinks having version 1 Fragment Iden-
tifiers version 1 URIs and version 1 hyperlinks, and similarly
for version 2 Fragment Identifiers, URIs and hyperlinks.
Since both version 1 and version 2 Fragment Identifiers are
utilized in some embodiments, the class of Fragment URIs
comprises the classes of version 1 and version 2 Fragment
URIs. Similarly, the class of Fragment Hyperlinks comprises
the classes of version 1 and version 2 hyperlinks.

Another aspect of some embodiments provides for the
utilization of both version 1 and version 2 Fragment Identi-
fiers to enhance the usability of search engine results, includ-
ing those of Internet based search engines. Multiple existing
search engines present snippets from selected documents as
part of the search results. Snippets typically appear immedi-
ately below related hyperlinks and give the user additional
human readable information about the relevance of a particu-
lar search result. Snippets are often taken from what appears
to the search engine to be the most relevant part of the docu-
ment, given the search criteria. According to this aspect of
those embodiments, a snippet or some larger relevant range of
the document associated with it becomes the target of a Frag-
ment Identifier range in that document. Either a version 2 or
a version 1 Fragment Identifier is created that embodies that
fragment range, and the Fragment Identifier is incorporated
into a hyperlink that takes the user to the snippet or some
content related to the snippet in the target document.

US 9,356,574 B2

65

In some embodiments, the user may configure various
aspects of the creation and display of snippet-associated
hyperlinks. If so configured, the text of the snippets in the
search results also become the anchor text (a hyperlink’s
visible, clickable text, also called a link label) of hyperlinks
having Fragment URIs created from the associated Fragment
Identifiers. When the user activates such a hyperlink he is not
only taken to the document, but also to the content related to
the snippet-hyperlink that he activated (e.g., clicked on).

If so configured, the anchor text of these hyperlinks
includes distinct new elements added to the search results
display. These are placed so that the user will visually asso-
ciate each with its corresponding snippet. For example, the
single word “Magl.ink” can be the anchor text of the hyper-
link associated with a snippet, and this text can follow the
display of each snippet. Similarly, a hyperlink anchor image
could precede or follow each snippet in the display; the image
could comprise a logo or a trademark.

When the user selects one of these hyperlinks, a browser or
other user agent typically opens the URI of the hyperlink and,
acting according to the particular embodiment and the user
configuration, will use the Fragment Identifier created
according to that embodiment to take the user directly to the
target document range associated with the snippet.

In some embodiments the user can configure his browser or
the user agent he uses to either select the target content using
the browser’s selection mechanism or highlight it. A benefit is
the user’s time saved finding the content of interest, as well as
the time saved not looking for content that may no longer be
present. According to the embodiment being used, the user
agent performs those determinations and scrolling actions for
the user automatically. This is even more beneficial on small
screen displays that typically have no keyboard and at best a
slow touchpad keyboard that takes over the display, since all
of this occurs with the user only making a selection and
without requiring keyboard input.

By activating a snippet associated hyperlink, the user pro-
vides additional information about what he is seeking at that
moment to the embodiment being used. This additional infor-
mation is used, in some embodiments, to modify the display
of the target document by showing the user that specific
snippet in the document. Under some circumstances, includ-
ing failure to find the snippet in the document, it is also used
in further searches on behalf of the user. At that point, the
snippet content becomes a focused search criterion.

When search results are first generated (i.e., without regard
to length), a search engine may initially produce ranges that
are too long to display in snippets. While such search engine
generated ranges are shortened into snippets that can be dis-
played, a longer range may be advantageously associated
with the snippet through a Fragment Hyperlink. This can be
achieved when the embodiment comprises the search engine.
While the snippet or snippets are shortened in order to provide
for space-efficient visual display, the associated range of the
document represented in a Fragment Identifier may include
additional text or images. In particular, snippets in search
engine results may only be phrases, but the user may config-
ure some embodiments to not artificially shorten the search-
identified relevant content purely on the basis of length, as is
done to arrive at search result snippets. He can also choose to
not artificially shorten content below the granularity of full
sentences; if this is configured and the snippet is found in a
part of the document containing sentences, then full sentences
surrounding the snippets are placed in the range associated
with the snippet. A search engine receiving a search request
with such preferences will provide hyperlinks to content that
is generally larger than the associated snippets.

10

15

20

25

30

35

40

45

50

55

60

65

66

The notion of “rich snippets” gives another example where
the range can usefully be longer than any particular snippet.
‘Rich snippets’ are document text identified by hidden meta-
data and taken from a document’s body and displayed in the
search results, below its main URI on the search results page.
Google presents rich snippets according to their own tem-
plates for such display; the order used to display individual
snippets is not necessarily the same as the order of the infor-
mation in the document, and information appearing between
the rich snippets chosen for display by the search engine may
not appear in the search results. For example, this may be
done for products where the product information determined
to be most relevant by the search engine is presented in a
sequence of short data points (rich snippets), each having an
explanatory Google-provided prefix. These prefixes are gen-
erated from the schema markup, and not from user visible
content. However, the data itself generally comes from a
block of visible information found in the target document, all
of which is advantageously in the range of one Fragment
Identifier created for the set of associated rich snippets and
applicable to a single search engine result hyperlink. In an
alternative embodiment, if the user has opted for aggregation
of snippet ranges for a single target document, then a search
engine creates a range of a Fragment Identifier from a rich
snippet collection for the single target document, and in so
doing it encompasses the full range of the presented rich
snippets from the document in the Fragment Identifier range.
In other words, from an associated set of attributes that con-
tribute to a set of rich snippets, the rich snippet that appears
first in the source document and the rich snippet that appears
last in the document are placed within the range along with
everything between them including the other associated rich
snippets. In addition, any sentence fragments are expanded at
the edges to encompass complete sentences, which results in
the final range.

Two forms of Fragment Identifiers were mentioned earlier,
version 1 and version 2. For search results version 1 Fragment
Identifiers can be created by a search engine; version 2 Frag-
ment Identifiers can be generated for search results by either
a user agent or a search engine. The range of a Fragment
Identifier created for a set of associated rich snippets is pref-
erably incorporated into a version 1 Fragment Identifier and
Fragment URI, from which a Normal-Mode Fragment
Hyperlink is constructed. If the search engine is so config-
ured, the range can be incorporated into a version 2 Fragment
Identifier. (This differs from the behavior for non-rich snip-
pets, where each snippet is made into its own range and, if
aggregation is selected by the user, then a single Fragment
Identifier comprises all of the resulting ranges.) The con-
structed hyperlink is embedded in the search results page in
association with each of the rich snippets. If the user has
configured his user agent so snippets become the anchor text
of their Fragment Hyperlinks (i.e., the snippet’s text is the
hyperlink anchor text), then each snippet of the rich snippet
set becomes the anchor text for its own hyperlink, but each has
the same Fragment URI for its href attribute. Otherwise, a
hyperlink having the Fragment URI appears adjacent to each
rich snippet.

Ifthe user has configured for un-aggregated snippets, then
each snippet has a (preferably version 1) Fragment Identifier
having a single range created for it. Individual rich snippets
may be very short, and it is disadvantageous for version 2
Fragment Identifiers to be created for short un-aggregated
snippets. Nevertheless, if the search engine is so configured,
then version 2 Fragment Identifiers are created. For snippets
that are fragments of sentences, the range is expanded to
include full sentences, depending on user configuration. Then

US 9,356,574 B2

67

the resulting Fragment URI is used to build a Fragment
Hyperlink for each snippet and it is displayed as determined
by the user’s preferences.

In another embodiment, the individual snippets are each
associated with a Fragment Hyperlink that can be activated
for just that snippet. In addition, a Fragment Hyperlink for all
of' the snippets together (for that particular document) is cre-
ated and placed adjacent to the simple hyperlink for the docu-
ment.

Users sometimes have multiple online personalities or
identities that are often called “roles”. For example, a user
might want a role for his business activities that is distinct
from his role as a coach for a children’s soccer team. In some
cases the issue is security, and the user may have different
machines for different roles and different levels of security. In
some embodiments, the URI Service and each machine used
by a user maintains a separate document navigation history
for each of the user’s roles. User machines keep this history
provided the user has instructed the URI Service that the
particular machine should retain the information for a par-
ticular role.

This history for a user’s role comprises a graph of nodes
which are a set of “Content Records”, and edges which are
“Activation Records”. The nodes, i.e., the Content Records,
come in three types: “Simple Content Records”, “Fragment
Content Records”, and “Search Content Records”.

Content Records of all types have a URI, a 128 bit (proba-
bilistically unique) identifier that is a hash of the URI string
(including any Fragment Identifiers), a time stamp for when
the record was first created, a document supplied title, and a
document supplied description. For a version 1 Fragment
URI the time stamp is also the time stamp for when the URI
was created. Title and description strings are possibly empty;
i.e., a document may not have supplied a title or description.
For HTML documents, the document title is found as
described in the HTML specifications and the description is
taken, if it exists, from the ‘META’ tag description value from
the head of the HTML document.

A Fragment Content Record may contain a Surrogate URI
string, if such a Surrogate URI exists for the Fragment URI. In
some embodiments all version 1 Fragment URIs are mapped
by Surrogate URIs and every Surrogate URI maps a version 1
Fragment URI. A Fragment Content Record also has an iden-
tifier for the role of a user who created the Fragment URI;
however, as shall be described in more detail below, while this
information is known to the URI Service and the user agent
where the URI was created, it may not be synchronized to any
particular user agent.

Fragment Content Records additionally have an ordered
set of representative strings that indicate the content identified
by the record’s Fragment URI to a user. The strings of this
ordered set are called snippets when they are displayed to a
user. While this set of strings often contains just one string,
there may be a multiplicity of them, up to a configured maxi-
mum. When the URI ofthe Content Record is first opened, the
user agent calculates this ordered set of strings according to
one of the processes 5100,5101 of FIG. 51. The two starting
points of FIG. 51 differ on the basis of whether ranges of a
DOM are the starting input (which are first converted to
strings), or strings are the starting input (which may have
come from search snippets directly). These strings are sized
for display to the user when perusing navigation history or
bookmarks. The maximum number of snippets displayed for
a document is configurable and by default the maximum in
some embodiments is 5. There is a Boolean associated with
the strings in the Content Record that indicates whether the
strings were generated from ranges located in the DOM. This

5

10

20

25

30

35

40

45

55

60

68

Boolean is synchronized in conjunction with the strings
between user agents and the URI Service.

In addition to the common properties for all Content
Records, a Search Content Record has a Boolean that indi-
cates if the search query was initiated by a URI recovery
operation, which is a process of automatically discovering
linkrot and providing the user with relevant search results for
the content that is missing. URIs that have some form of
linkrot are recovered in part by searching for the original
content, so a search launched automatically for such content
is identified as such by this Boolean. Search Content Records
also have an associated string, which is the search criterion
string.

Note that version 1 Fragment URIs and their associated
Surrogate URIs have matching Common DOM Forms stored
at the URI Service. Content Records for version 1 Fragment
URIs at the URI Service are preferentially the same as the
records containing version 1 Fragment URI data stored at the
URI Service. These are beneficially stored only once, and
independently of any particular user or user’s role. For other
types of URIs (i.e., conventional URIs and version 2 Frag-
ment URIs), the URI Service keeps separate Content Records
for each of a user’s roles. The user’s role identifier, which
identifies the creator of a Fragment URI, is only sent to
machines that synchronize navigation history for that user’s
role; otherwise the value of zero is sent in place of the iden-
tifier, which indicates that the creator of that URI does not
synchronize navigation history with the recipient machine.
This restriction is a privacy issue in that a user may want to
create and disseminate a Fragment URI that identifies some
content but does not wish the Fragment URI to identify him as
its creator, except to himself.

A Content Record is functionally determined by its URI
(including any Fragment Identifiers of an embodiment); a
hash value is calculated from the URI to produce a 128 bit
identifier for the Content Record. If a high quality hash func-
tion is used, such as a member of the GENERAL family of
hash functions previously described for some embodiments,
then with high probability the hash values differ for URIs that
differ.

When a URI is activated (e.g., the user clicks on a hyperlink
to display a document), an Activation Record is created. An
Activation Record consists of a unique Activation Record
identifier, a creation time stamp, the Content Record identifier
of the “Destination” Content Record, and the identifier of a
“Previous” Content Record in the navigation history. The
Content Record identified by Destination holds the URI that
was activated. The Content Record identified by Previous
holds the URI of the document from which the user caused the
Destination document to be activated (e.g., the document
where he clicked the URI of the Destination). If the user
activated a hyperlink in document A to arrive at document B,
then the newly created Activation Record will have a time
stamp for the time B was activated and identify the Content
Records having the URIs for documents A (the Previous
Content Record) and B (the Destination Content Record).
Because distinct Fragment URIs can indicate different parts
of the same document, multiple Content Records will fre-
quently identify the same document. Since users navigate
using the same URI at different times, multiple Activation
Records will identify the same Content Record. Not all Acti-
vation Records have a Previous Content Record, since a user
could enter a URI by hand or by pasting from some arbitrary
source that cannot be identified by a user agent. Similarly,
when an external application activates a URI in a user agent as
happens when a user clicks on a link in an email, the source
may not be known. For example, search engines are often

US 9,356,574 B2

69

opened by entering a short URI by hand. On the other hand, a
role’s bookmarks and history are discernible sources of links
and transitions from them to documents are marked with
special Previous Content Record identifiers reserved for those
sources.

In some embodiments the navigation history and book-
marks for a user’s role are synchronized between the URI
Service and the machines on which the user chose to keep the
role’s information. In order to facilitate this synchronization,
the identifier scheme for Content Records preferably uses
sufficiently many random bits or hash bits to probabilistically
ensure there are no collisions between identifiers, so entities
can create new ones without coordinating with other entities.
Some embodiments use 128 bits for this number. Time stamps
in the two record types are used in part for synchronization
efficiency.

In some embodiments, the history for a user’s role is
searchable and also directly navigable by any user agent
embodiment that has a copy of that history. Each set of strings
for a Content Record is effectively a separate searchable
entity that may be indexed. When the role’s history is
searched, the results are displayed in a manner similar to
search engine results, complete with snippets and hyperlinks
to the document from whence the snippet came. Snippets
cannot always be provided, but if there are strings, such as a
description or content of a document, then the whole string or
a substring can be made into a useful snippet. Ifthe strings are
short then the entire string becomes the snippet, and if they are
too long for a snippet then an initial substring is taken as an
identifying snippet. Unlike a search engine index however,
the history of a role in some embodiments may be directly
navigated by repeating or reversing the user’s previous paths
through the history.

To facilitate this navigation, there are three ways to display
the user’s navigation history and one way to display his
bookmarks. The first navigation history mode shows the
sequence of documents in chronological order based on Acti-
vation Record time stamps. These can be displayed with or
without content (snippets), and the user can switch between
displays by pressing a button. In the form without content
snippets, the history of activations is displayed as URIs
together with document titles. The user may navigate through
the history by scrolling forward or backward within a history
display page. Alternately he or she can select a time period to
display.

The second navigation history display mode is from the
perspective of a search criterion applied to the history. This
mode of display is most like a search engine display in that the
results are based on the search criteria and the strings of the
Content Records are what are searched. The URIs, document
titles, and document descriptions are searched, as well as the
content strings. Each Content Record displayed in search
results includes the title of the document (as happens with
regular search engine results), which is also a hyperlink to that
document. This overall hyperlink uses the URI from the Con-
tent Record, which may be a Fragment URI. The search
results are ranked by relevance, and the snippets (the short
content most relevant to the search criteria from the matching
Content Records) have associated version 2 hyperlinks that
link to the snippet content in the document, as compared with
the title hyperlink which uses the Content Record’s original
Fragment URI and could identify a range that is arbitrarily
larger than a snippet. However, in many cases the overall
hyperlink will target the same content, in which case the
original URI is used for both the title and the snippet, instead
of generating new version 2 hyperlinks. (Details of version 2
hyperlinks come below.)

10

20

25

30

35

40

45

50

55

60

70

The third navigation history display mode involves the
concept of a designated Content Record. This is a Content
Record to become a focal point for the history display in the
third display mode. Clicking on a Content Record display (as
opposed to the hyperlink that activates the Content Record’s
UR]) in either of the earlier two display modes causes that
Content Record to become a designated Content Record and
its URI a temporarily designated URI.

The third navigation history display mode is a display from
the perspective of a particular designated Content Record; the
display includes a section containing the Content Records
from whence the user navigated to the designated Content
Record’s URI (collectively called ‘from’ records), and a sec-
tion containing the Content Records to which the user navi-
gated from the designated Content Record’s URI (collec-
tively called ‘to’ records). Again, content snippets for each
Content Record may be displayed or not, and the user can
switch between display formats by pressing a button. Click-
ing on a Content Record display (as opposed to the hyperlink
that activates the Content Record’s URI) causes that Content
Record to become the next temporarily designated Content
Record.

A Content Record may have been activated many times; its
activation time stamps can be used to limit the display to those
‘from” and ‘to” records relevant to a particular activation or
range of activations. This filter can be achieved by: consider-
ing either a single activation of the distinguished Content
Record or those in a specified time range, called the “distin-
guished activation set”. Relative to the distinguished activa-
tion set, there is either a latest activation of the distinguished
Content Record that precedes the distinguished activation set,
called the “latest prior activation”, or there is no such preced-
ing activation. Likewise there is an “earliest subsequent acti-
vation” of the distinguished Content Record relative to the
distinguished activation set, or there is no such subsequent
activation. The ‘from’ Content Records are eliminated from
display for activations that come after the last member of the
activation set, and if it exists those that come before the latest
prior activation are also eliminated. The ‘to’ Content Records
are eliminated from display for activations that come before
the earliest member of the activation set, and if it exists those
that come after the earliest subsequent activation are also
eliminated.

In some embodiments, the user may switch between these
three modes of display at will by simply clicking one or more
buttons. The user can navigate backward and forward through
the various history and bookmark displays using browser
backward and forward navigational arrows, if present.

In some embodiments, when a user begins navigating in the
history and until the user again accesses a document outside
the history of a user’s role, there is no new history created.
When the user activates a document from this history, the
Activation Record created has a Previous identifier that indi-
cates the navigation history itself as the source of the link. In
an example implementation of those embodiments, this his-
tory URI is not a true URI at all but simply the string “User-
MaglinkHistory”, and there is only one such Content Record
in a navigation history.

In some embodiments, a Content Record is created imme-
diately when a user begins the Fragment URI creation pro-
cess, before the Fragment Identifier itself is created. This can
be used to target advertisements to the user while he is in the
process of creating a Fragment Identifier. Initially the URI has
no Fragment Identifier. Later, when the Fragment Identifier is
in fact created according to the user’s preferences, its infor-
mation is also placed in the incomplete Content Record. Ifthe
user aborts creation of the Fragment Identifier, then the Con-

US 9,356,574 B2

71

tent Record is altered by setting the URI to a fixed Fragment
URI creation string that is not a real URI, which in this
example is “MagLinkCreationURI”.

At the URI Service the navigation history is useful for
targeting advertisements with precision, which follows since
Fragment Identifiers more precisely identify content of inter-
est to the user than do whole document URIs. By having more
precise information about a user’s interests, the URI Service
is in a unique position to accurately and effectively target
advertising. The URI service maintains “Advert Display
Records”, which track what advertisements have been dis-
played to a user or that user’s roles. Every advertisement that
is displayed to a user, which was targeted according to some
embodiments, is recorded in association with the Activation
Record that resulted in display of that advertisement.

“Advert Display Records” remain at the URI Service and
are not synchronized with user agents.

Advert Display Records include the identifier of the Acti-
vation Record that resulted in the advertisement’s display and
the identifier of the advertisement that was displayed. Insome
embodiments each advertisement has a distinct identifier for
every version of that advertisement. An advertisement is
given a unique identifier that is used across all users for whom
that advertisement is displayed. If multiple advertisements
are displayed as part of a particular activation, then there are
as many Advert Display Records created. Advert Display
Records include a Boolean indicating whether the user inter-
acted with that advertisement, such as by clicking on it.

The goal is to better choose an advertisement, out of an
arbitrary set of possible advertisements, to display to that
user, in association with that document, at that moment in
time. In principle the most effective advertisement should be
the most valuable to the advertiser, so in an ideal efficient
auction market the best advertisement to choose is the one
having the highest price for the available slot. Over time a new
targeting scheme finds its actual value, which is higher if it is
more effective, so the price paid for slots chosen by such a
new targeting scheme increases over time if it is more effec-
tive than expected. The problem is to know which advertise-
ment is the best based on the user’s history. Here we have the
user’s full browsing history (for a particular role), with con-
tent precision produced by the use of Fragment URIs; i.e.,
much of the content that is extraneous to a user’s interests has
been eliminated from consideration by the use of Fragment
URIs that identify specific content within documents.

In some cases the URI Service or Redirect Service serves
out the page containing the advertisement; for example, when
auser creates a version 1 Fragment Identifier according to the
process 1100 of FIG. 11, the displayed page from the URI
Service may have 1130 advertisements that depend upon the
source page, the selection, and other aspects of the user’s
history. The choice of advertisements made in process 1100
beneficially utilizes the user’s history as described here. The
creation of Fragment Hyperlinks is a valuable activity to the
enterprise owning the URI Service, and it is possible for a
document source (such as a blog) that sells slots to advertisers
to promote the creation of Fragment Hyperlinks by its users.

When it comes to advertising, all user interest in content is
not equivalent. For example, a user could have recently acti-
vated a Fragment URI having associated strings that contain
a key phrase useful for targeting advertisements for product
A. He may also have recently created a Fragment URI with
associated strings that contain a key phrase useful for target-
ing product B advertisement. By one line of reasoning, the
two are identical in value and by another line of reasoning the
one may be worth more than the other. For example, if the user
chose to activate a URI based on a snippet that he read at the

10

15

20

25

30

35

40

45

50

55

60

65

72

time of activation, then he is purposefully following that link
looking for that information or the context of that informa-
tion, and such activations could be just as valuable as link
creations. I[f the goal of navigation history analysis is to ascer-
tain if there has been an expressed and very recent interest that
could lead to a purchase then the older information in a user’s
navigation history could be of little value to that analysis, but
if identifying the user’s general interests is the goal of the
analysis of navigation history, then using only the most recent
history or most recent searches may be inaccurate and could
lead to sub-optimal use of the advertising space. Only the
advertiser knows what the goal of the analysis is and can craft
his criteria and bids for advertising space to fit with that goal.
The analysis provided by some embodiments beneficially
allows the crafting of arbitrary query criteria that can work
and be adapted to work across a wide range of possible goals.

There are database structures and query languages that can
support a multitude of queries against this history, the most
common and well known of which are from the relational
database model. Thus, in some embodiments, an instance of
the record sets described (Content Records, Activation
Records, and Advert Display Records) can be queried accord-
ing to existing commercial relational database query lan-
guages that include arbitrary first order logic criteria as pro-
vided by the relational model. Beyond basic relational logic
(also known as first order predicate logic) they notably
include complex string matching criteria for words, word
stems, and phrases. They also include numerical comparison
criteria that can be used in some embodiments; for example,
they can be used to bound time stamps to arbitrary intervals,
including open ended intervals bounded on only one side.
They can also count the number of records resulting from
queries or sub-queries, and base results on those counts. The
most commonly used commercial relational database engines
efficiently provide all of these capabilities and more.

Therefore, in some embodiments, an advertiser can pro-
vide the URI Service with an arbitrary relational query (a first
order logic query augmented with capabilities provided by
commercial relational database engines) against this database
and associate prices with that query for display of various
advertisement alternatives. These alternatives include size
and media type. The query is applied at the time of advertise-
ment display. If the result of the advertiser-supplied query is
positive (for the particular user’s role), then the prices the
advertiser associated with advertisements and that physically
fit in the available slots are taken as bids for those slots.

In this way an advertiser can make arbitrary criteria for his
marketing campaign and bid on an essentially unbounded
multitude of possible criteria defined by him. For example, by
crafting his own queries the advertiser can bid on key words
and phrases appearing in the ranges of Fragment URIs asso-
ciated with snippets that the user activated and the search
strings that generated those snippets; he can bid on key words
appearing in strings of Fragment Identifiers activated but not
associated with search snippets; he can bid on key words
appearing in search strings, search strings utilized (a search
string is utilized when the user activates a link from search
results), or search strings utilized more than once (more than
one link activated from the search results). The advertiser can
also set criteria for how many distinct URIs in the user’s
history have a key word or phrase and how many times such
a key word or phrase has appeared in Fragment URIs that
were activated (although the same URI may be repeated). An
advertiser can set criteria, either negative criteria or positive
criteria, for how recently the user has been shown an adver-
tisement from a set of advertisements and whether the user
interacted with any of those advertisements. (For security

US 9,356,574 B2

73

reasons, in some embodiments, an advertiser can only query
about previous display and interaction with his own adver-
tisements.) In addition, an advertiser can set criteria for when
the various query elements are to be applied. For example, a
phrase may be required to be in one of the Fragment Identifier
ranges from the current URI activation, or the current URI
activation and a predecessor search criterion combined, or
alternately within two hours of the current URI activation.
Since the URI about to be opened is available in the database,
it is possible for a partial string match criterion to select for or
against a particular Internet domain or set of domains; in this
way advertisements on some sites can be devalued or
enhanced in value according to the goals of the marketing
campaign.

Consider the following example. Suppose that the phrase
“Harry Potter wand” has been bid up in price for advertise-
ment space on prominent search engines. Also suppose that a
user who followed a Fragment URI that has this phrase in its
target string then opens a weather site to check on the local
weather. An advertising slot on that weather site for that user
at that moment is likely worth more than the weather site can
hope to receive from untargeted advertisements. While
weather sites are visited often, the advertising presented on
them is often generalist in nature; i.e., the advertising has a
wide market in the general population, typically has nothing
to do at all with weather, and the price paid for such adver-
tising space is less than for targeted advertising. But this
increased value can only be realized if there is some means to
target that particular user with advertisements based on his
history rather than on the subject of the moment (in this
example weather), or no subject at all, which is common for
weather sites and many others.

There has been speculation about why, at least so far, social
media sites are less effective for advertising than some other
sites. According to one theory the ineffectiveness derives
from the fact that users do not go there to buy things. While
this may be true, they do not go to weather sites to buy things
either. A weather site and a social media site have in common
that users often do not reveal effectively, in their interactions
at that site, what it is that they could be interested in purchas-
ing. However, the social media sites and weather sites also
both have users and advertising slots for display to those
users. Mechanisms of some embodiments provide precise
targeting solutions to overcome these difficulties. In those
embodiments, the user precisely reveals his interests by the
Fragment URIs he creates and uses, as well as his searches;
that information is then used, potentially for whatever docu-
ment he may open and read, to choose advertisements more
likely to interest him.

When a user activates a URI that is served to user agents by
an advertising server that targets advertisements according to
some embodiments, and there is space for one or more adver-
tisements associated with the display of'that URI’s document,
then the various potential advertisers’ key words, phrases,
and other criteria as described by his relational database
query or queries are evaluated against the user’s history for
his current role at the URI Service. Note that when the query
is run at the URI Service, this role history in those embodi-
ments includes the activation record for the URI that is cur-
rently being activated. For each slot available for advertising
in association with that URI, starting with a most valuable
slot, the return for that slot is optimized based on the query
results. In other words, the highest price possible based on the
user’s history is taken. With that slot taken, then a next most
valuable slot is optimized and so on until the advertisement
slots are filled (provided they have any value to the set of
advertisers at all) and the document is displayed complete

25

30

35

40

45

74

with advertisements. In some embodiments, advertisements
for competing products or services are not displayed in the
same document at the same time, and advertisers can indicate
that their advertisements have such a competitive relationship
with advertisements from competitors. Similarly, an adver-
tiser may limit the number of his own advertisements in a
single document. Thus, when the first advertisement is cho-
sen, it may preclude some other advertisements from also
being chosen even if they would otherwise optimize the return
for display of that document.

In other embodiments either more or less sophisticated
advertisement targeting schemes can be used. To enhance
targeting, searches can be augmented with semantic analysis
to ensure that the selected text uses positive terms in associa-
tion with the key word or phrase. In other cases negative terms
in association with key words or phrases would be more
desirable. For example, in advertising for political contribu-
tions, a user selecting text that is negative toward an opponent
to the candidate of interest could be a more likely target than
one selecting arbitrary or neutral text about the candidate
himself.

Other embodiments allow targeting specific geographical
areas based on IP addresses, zip codes of users, or precise
real-time positioning systems such as GPS (Global Position-
ing System) when such are available. In such an embodiment,
the query could require a computed distance from the nearest
of'several arbitrary points (which could for example be places
of'business) to be less than some maximum. It could likewise
require distances to all points in a set to be greater than some
minimum, perhaps to ensure a minimum distance from some
store-front businesses.

Because each Surrogate URI is redirected by the Redirec-
tion Service every time it is activated, considerable navigation
history may exist at the URI Service for users who do not use
an embodiment. Because of this, sufficient information to
target advertisements for display to an arbitrary user may
exist. For example, when a user is shown an offer to upgrade
to an embodiment (see FIG. 46), the algorithm yielding best
targeting possible based on the available history is used to
select advertisements to display in some embodiments. If an
advertiser’s query criteria are met for such a user and he is the
highest bidder, then the advertising slots are filled by his
advertisements. In some embodiments, insufficient informa-
tion to evaluate an advertiser’s query relative to a particular
user causes that query for that user to evaluate negatively; i.e.,
the user does not meet the criteria of that query if the infor-
mation for that user is insufficient to evaluate the query.

In some embodiments navigation history and bookmarks
are supported from a common database and, from the user’s
perspective, the bookmarks and navigation history displays
are part of the same unified or combined feature. For example,
switching between the bookmarks display and any of the
navigation history displays is performed by the same user
interface facilities. For a browser, the display uses a content
page that loads, in principle, from the URI Service, but in fact
most of the data displayed comes from the local database. A
Content Record can be bookmarked, and in this way book-
marks are in effect Content Records with additional user-
supplied hierarchical and descriptive information. Some
embodiments support a hierarchical (directory or folder)
structure and the ability to switch between bookmark views
and navigation history views. For example, for any Content
Record that is a bookmark, a bookmark icon appears in asso-
ciation with the display for that Content Record in any navi-
gation history display.

Any selection (including an empty selection or no selec-
tion) of an open document may be bookmarked in some

US 9,356,574 B2

75

embodiments. If a selection is active in a document, or the
URI belonging to the document’s Content Record is neither a
search engine results URI nor a version 1 Fragment URI, then
aversion 1 Fragment URI is created for the document and the
selection when it is bookmarked. If no selection is active (the
selection is empty), and the URI belonging to the document’s
Content Record is a version 2 Fragment URI, then the version
2 Fragment URI is converted to a version 1 Fragment URI
(i.e., the range or ranges as they would be displayed for the
version 2 Fragment URI are used to create a version 1 Frag-
ment URI according to the process 1100 of FIG. 11). If the
URI of the Content Record is for a simple URI, i.e., neither a
Fragment URI nor a search engine results URI, then a version
1 Fragment URI is created for the document with a range that
encompasses the whole document. These creations or con-
versions to version 1 Fragment URIs support the best possible
future recovery of bookmarked information.

Thus, in some embodiments bookmarks reference a Con-
tent Record for a version 1 Fragment URI or a search query
results URI. Search query results URIs by their nature are not
“recovered” for original information, but instead searches are
run again when it is opened, even from a bookmark.

For bookmark support, two additional record sets are
added to the navigation history database for a user’s role. The
first of these are “Folder Records”, which have five parts: a
possibly zero-length user supplied folder name string, a pos-
sibly zero-length user supplied description string, a unique
identifier (for the Folder Record itself), and a parent folder
identifier (the unique identifier of a parent Folder Record).
The Folder Records for a user’s role are in a rooted tree
structure. Except for the root node, the user typically creates
the Folder Records. The root node has no Content Record,
description string, or parent; it has a user configurable name
that, for English implementations, defaults to “Bookmarks”
in some embodiments. A name may be used for multiple
Folder Records since it is the identifiers and parent identifiers
of Folder Records that establish the tree structure.

The second record set for bookmarks are the “Bookmark
Records”, each of which has a unique identifier for the Book-
mark Record itself, a possibly empty user supplied title string,
a possibly empty user supplied description string, a possibly
empty set of tag strings, a Folder Record identifier, a Content
Record identifier, and a time stamp for the time the Bookmark
Record was created. As already described, the Content
Record identifier for bookmarks is constrained in some
embodiments to not refer to a Content Record of a version 2
Fragment URI. In some embodiments a Content Record can
be referenced by one or more Bookmark Records. The tag
string set is an arbitrary set of tags that the user can apply to
bookmarked documents, and the user can choose views of
bookmarks or navigation history that is limited to bookmarks
having a particular tag or set of tags.

Some embodiments have, in addition to the three ways to
display the user’s navigation history, a way to display the
user’s bookmarks hierarchically. The left part of this display
has the folder and its subfolders in a common graphical hier-
archical presentation that includes the ability to collapse a
folder and its sub-folders to a single folder, or to expand these
to show content at the next level downward, both by clicking
on the folder’s icon. This is similar to the display of folder or
directory hierarchies used for file systems.

In an adjacent space on the right there is a separately
scrollable list of both folders and bookmarked Content
Records. The document titles are displayed with the URIs for
the Content Records. If the user has supplied a title for a
document, then that takes precedence over the title provided
in the document and is stored (if it exists) in the Content

10

15

20

25

30

35

40

45

50

55

60

65

76

Record. A selected bookmark is temporarily a designated
bookmark and the Content Record of a designated bookmark
is temporarily the designated Content Record. The user can
choose (e.g., by clicking a button) any of the other three
navigation history display types, and when changing to them
the designated Content Record is the temporarily designated
Content Record in the new display mode. Like the other
display modes, changing between a display that includes
snippets and descriptions to a more compact display with one
line per bookmark can be performed at any time at the user’s
request, which in some embodiments is achieved by the click-
ing a button.

Ifthe current designated Content Record is also associated
with exactly one bookmark, then that bookmark becomes the
designated bookmark when the bookmarks display is entered.
The designated bookmark, if there is one, is marked as
selected and the folder hierarchy leading to that bookmark is
opened.

When bookmarks are displayed with snippets, the user
supplied description of the bookmark (if there is one) is
displayed after the title and before the snippets, but without
being part of a hyperlink. Each bookmark may be activated
(its document opened) using the URI found in the Content
Record. Further, each snippet has a version 2 hyperlink that
on activation takes the user to that snippet in the document.

If a user changes to the bookmarks display from one of the
non-bookmark entries in the history, and the designated Con-
tent Record is not associated with any bookmark, then the
display opens the root bookmarks folder and there is no
designated bookmark. Again, when a Content Record is
bookmarked, its display (except when in the bookmarks dis-
play, where every Content Record is bookmarked) includes a
small bookmark icon, so the user has a visual indication that
a particular Content Record is bookmarked. The user can
navigate backward and forward through the various book-
mark and history displays using browser backward and for-
ward navigational arrows, if present.

Theuser can view or edit a folder’s description any time the
folder name is displayed in the panel to the left. This is done
using the context menu’s ‘Edit” option, displayed when the
user hovers over the folder’s name and clicks the mouse
button that activates the context menu. He can edit a book-
mark’s title, description or tags using the context menu’s
‘Edit’ option for any bookmark that is the designated book-
mark.

Changing to the bookmarks display when the designated
Content Record is the Content Record associated with mul-
tiple bookmarks is done based on session history, i.e., history
since the current user agent process was started on the hard-
ware device. This session’s most recently designated book-
mark (i.e., the one most recently selected while in the book-
marks display) that is associated with that designated Content
Record becomes the designated bookmark, and its Content
Record remains the designated Content Record. If there is no
such recently designated bookmark, then the most recently
created bookmark that has the designated Content Record
becomes the designated bookmark.

The Bookmark Record sets for a user’s role are synchro-
nized with the URI Service as they are created. As with the
navigation history the Bookmark Records have time stamps,
in part to make synchronization efficient. Relational database
facilities provide the query and transformation abilities for
performing the described operations to arrive at the displayed
content in some embodiments.

While the Bookmark Records are synchronized and
backed up for a user through the URI Service database, in

US 9,356,574 B2

77

some embodiments those bookmark specific records are not
exposed to advertiser’s queries.

A non-embodiment user agent can access the navigation
history and bookmarks for a user’s role from the URI Service
provided by some embodiments. This is done by providing a
visually similar HTML based document interface for viewing
the user’s history and bookmarks. A major difference is that
the content is provided as complete web pages from the URI
Service rather than by constructing the content from a copy of
the navigation history and bookmark database at the user
agent. However, if the user activates a Fragment URI from
this history using a non-embodiment browser, then document
scripts cause the user to be offered upgrades to an embodi-
ment according to the process 4600 of FIG. 46.

It is convenient for the user to have a Fragment Hyperlink
that will select or highlight all of a document’s identified
content when the Fragment Hyperlink is activated. In order to
provide this convenience we create such a Fragment Hyper-
link and call it an “Overall Fragment Hyperlink”. An Overall
Fragment Hyperlink contains an “Overall Fragment URI”,
which in turn contains an “Overall Fragment Identifier”. An
Overall Fragment Identifier includes all of the snippets (rela-
tive to a particular search) or snippet related content for the
document and often includes multiple ranges. Since users
may sometimes want to use a conventional link to the docu-
ment, we do not replace the conventional hyperlink but
instead insert the Overall Fragment Hyperlink after the cor-
responding conventional hyperlink usually found at the top of
a document’s search results. This allows users to see all the
content identified as relevant selected or highlighted without
returning to the search results page and picking a Fragment
Hyperlink for another snippet. Users may evaluate the search
result snippets and choose the Overall Fragment Hyperlink,
an individual snippet-specific Fragment Hyperlink, or the
conventional hyperlink depending on the user’s purposes and
evaluation of the data.

Overall Fragment Identifiers are similar but not identical to
Fragment Identifiers having aggregated snippet ranges. For
both, all of the ranges associated with a document’s snippets
(relative to a particular search) are represented in a single
Fragment Identifier. For an Overall Fragment Identifier, snip-
pet ranges appear in the order found in the Common DOM
Form and all of the snippets or their related relevant content
will be selected or highlighted when the user activates a
corresponding Overall Fragment Hyperlink—and the user
will be taken to the first snippet. Aggregated Fragment Iden-
tifiers and their associated Fragment Hyperlinks differ in that
the user is taken (the document scrolls to) the snippet or
related relevant content visually associated with (e.g., adja-
cent to) the Fragment Hyperlink. This is arranged when cre-
ating a Fragment Identifier by placing the range associated
with the particular snippet in the first position.

FIG. 17 illustrates the coordinated behavior 1700 of search
engines and user agents when the user invokes a search
according to some embodiments. A user invokes a search
interactively or via automated means 1702, and this invoca-
tion comprises search criteria that usually include search
terms. For interactive invocations, search criteria are typically
entered into a search engine web page using a user agent. User
agents are most often browsers running on a PC, laptop,
tablet, or a mobile phone, but may be other things such as a
proxy search engine, a proxy browser that does server-side
rendering, or a non-browser web application.

If the user agent instance has not received the capabilities
of the search engine (i.e., it has not been established since
launching the user agent process) 1703, then a query is sent to
the search engine to determine the capabilities 1704 of the

10

15

20

25

30

35

40

45

50

55

60

65

78

search engine with respect to the embodiment. The response
includes whether the search engine is configured to create
Fragment Hyperlinks in search results. A response indicating
that it does not understand the request or no response indi-
cates that it has no such capability. This step 1704 may be
omitted when a web page created by the search engine is used
to invoke the search, since the search engine web page state
would, in some embodiments, provide that information.
Under such circumstances the state for the search engine is
kept on the user agent, perhaps through the use of cookies,
which would also (in some embodiments) record the user’s
preferences with respect to Fragment Hyperlinks. Alter-
nately, the web page would have means to input user prefer-
ence information for a particular search.

However achieved, once the search engine capabilities are
known, the user agent constructs the search query and sends
it to the search engine 1705, then awaits the reply. The query
sent to the search engine includes the user’s preferences relat-
ing to Fragment Hyperlinks, but only if the search engine
supports such preferences. The user preferences include those
required by the process described in FIG. 18. In some
embodiments, these include:

whether the user prefers “full relevant content™; i.e., that

Fragment Identifier ranges identify highly relevant con-
tent without regard to length or without shortening rel-
evant content to snippets;

whether the user would prefer that ranges be aggregated in

Fragment Hyperlinks;

if the user wants full-sentence Fragment Hyperlinks.

Recall that such capabilities have been described above for
version 1 Fragment Identifiers; the version 2 Fragment Iden-
tifiers, described subsequently, will have these capabilities as
well.

The search engine performs a normal search using the
search criteria received 1710. When content relevant to the
search is found and shortened into snippets for display, longer
ranges of relevant content may be advantageously associated
with the shortened snippets. This is done using the capability
that is provided by some embodiments to represent Fragment
Identifier ranges that are independent of the range’s length.
Thus, while the text may be shortened into one or more
snippets in order to provide for space-efficient visual display
to the user, the associated document range represented in a
Fragment Identifier may advantageously, depending on the
search criteria, include additional text. Unlike snippets in
most search engine results, in some embodiments such ranges
will not be artificially shortened below complete sentences,
provided the user’s configuration requires full sentences and
the snippet originated in a part of the document that uses
them.

Implementation of these embodiments involves imple-
mentation-specific choices. Examples include the exact syn-
tax chosen for the Magl.ink Friendly declarations and the
particular encoding used for the version number of a Frag-
ment Identifier. An implementer will make many such
choices inrealizing a concrete implementation of an embodi-
ment. Because some of these choices determine or affect the
syntax of communication between different computation
devices, those skilled in the art will appreciate that some of
these choices become details of communication protocols,
and that they must be uniformly chosen across a distributed
embodiment. For example, if choices were made differently
for a search engine than for a user agent, then that search
engine could only interoperate with the user agent as
described herein with the aid of a translation layer. For these
reasons and in order to add clarity, we sometimes provide

US 9,356,574 B2

79

detailed syntax and describe embodiments in the context of
that syntax, even though the syntax presented is only one
possible implementation.

When a search engine implements some embodiments, it
keeps a Boolean datum that indicates whether the document is
Magl.ink Friendly with each indexed document. Recall that
“Maglink Friendly” was described with an example detailed
syntax, which is most advantageously uniformly chosen
across a distributed implementation. Without loss of general-
ity we assume for descriptive purposes that there is a single
distributed implementation of an embodiment, which means
that the search engine implementation is compatible with and
interoperates with implementation specific elements on other
machines. Thus for example, declarations of Maglink
Friendly have the same syntax and meaning in the search
engine implementation as in user agent implementations.
Likewise, the version 1 and 2 encodings are the same for all
parties.

Each search result URI is associated 1710 with the corre-
sponding document’s Maglink Friendly Boolean in order to
affect further processing of the search results. Being
Magl.ink Friendly means that the document contains a Bool-
ean metadata datum, according to an aspect of some embodi-
ments, which indicates that the behavior of any active docu-
ment content (e.g., scripts) is oblivious to (does not depend
upon) the presence or absence of an embodiment’s Fragment
Identifiers. This means that the user experience will be iden-
tical whether an embodiment’s Fragment Identifier is present
or not, when the document is displayed by a user agent (e.g.,
a browser) that itself has no code sensitive to the embodi-
ment’s Fragment Identifiers. This is a non-trivial assertion;
there are HTML web sites whose scripts behave quite differ-
ently when they see any kind of a fragment identifier that is
not recognized by the script. This may also occur when there
are multiple fragment identifiers of whatever kind, which is
formally forbidden by RFC 3986, but is not precluded by
existing practice though it is nevertheless unexpected by
active content of many documents. When seeing the unex-
pected such documents may behave as if the entire URI is in
error and may go so far as to redirect to another site or
otherwise display different content.

If the search engine is not capable of constructing Frag-
ment Identifiers of the embodiment, then it will not have been
requested to do so or will not recognize that it has been
requested to do so, and it sends the normal search results back
to the invoking user agent 1725. However, if it does have such
capability, then it determines if the user desires Fragment
Hyperlinks 1715 based on the criteria received with the
search request. If no Fragment Hyperlinks are desired and the
search engine is not 1717 configured to always create Frag-
ment Hyperlinks, then the results are sent back to the invoking
user agent 1725. If Fragment Hyperlinks are desired 1715 or
the search engine is 1717 configured to always create Frag-
ment Hyperlinks, then the search engine creates an Overall
Fragment Hyperlink for each document and a Fragment
Hyperlink for each content snippet found in the search results
1720 and incorporates them into the search results according
to the process 1800 of FIG. 18. The results are then sent 1725
to the invoking user agent.

On receiving the results at the user agent it is not known
definitively whether the search engine incorporated Fragment
Hyperlinks according to the user’s desires or not. If the user
desires 1730 Fragment Hyperlinks then the results are parsed
to determine if the search engine 1735 included Fragment
Hyperlinks into the search results. If it did not then 1740 the
user agent creates an Overall Fragment Hyperlink for each
document in the search results and individual Fragment

10

15

20

25

30

35

40

45

50

55

60

65

80

Hyperlinks using the content snippet strings from the search

results. Then it incorporates the new hyperlinks into the

search results according to configuration settings; a more

detailed description of this process 1900 is given in FIG. 19.

The hyperlinks embedded in the search results page are used

in the normal manner 1745; the user may further interact with

them, such as selecting a Fragment Hyperlink for activation.

Search engines can construct Fragment Identifiers to iden-
tify ranges in a document that are longer than the snippets
they are associated with. Snippet length is limited in a search
results page, and cannot be as long as would be most appro-
priate for some search results. Thus, association of a Frag-
ment URI with a snippet does not necessarily mean that the
Fragment URI identifies precisely that snippet in the target
document; it may identify more than the snippet. For
example, it could identify the complete sentence or the para-
graph from which the snippet was taken.

In alternative embodiments, in cases where interpreting
Fragment Identifiers that identify text larger than the associ-
ated snippet, the broader text of the range is highlighted, but
the snippet is selected within that range and scrolled to.
Search engines achieve this by providing two ranges, where
one is contained entirely within another. When interpreted
according to these embodiments, the larger range is high-
lighted and the contained range is selected.

FIG. 18 illustrates the process 1800 of creating Fragment
Hyperlinks at the search engine, before they are sent to the
user agent. Inputs 1805 for this process include:

Input: Boolean, true if the user prefers “full relevant content”
Fragment Hyperlinks

Input: Boolean, true if full-sentence Fragment Hyperlinks are
requested.

Input: Boolean, true if aggregated snippet ranges in Fragment
Identifiers are requested.

Input: Boolean, true if the user agent requested Fragment
Hyperlinks.

Input: A set of search results for display to a user, with results

for each specific document comprising:

The document’s URI.

The document’s Common DOM Form.

The MagLink Friendly Boolean for the document.

The snippets’ Common DOM Form ranges that are to be

displayed in search results, each in association with the

Common DOM Form range of content that the search

engine identified as relevant, from which the snippet was

taken. (Note that the ranges used here identify beginning
and ending objects as opposed to the boundaries between
objects.)

5. Identification of subsets of the snippets that are associated
rich snippets. Rich snippets come in mutually associated
sets; for example, a product name and its color could be
associated rich snippets, and another product name and its
color could be another set of associated rich snippets for the
same document. Typically there will be at most one set of
rich snippets in the search results for a particular document.
Note that some search engines also present snippets that do

not actually come from document content. Since the search

engine is in a position to know which snippets came from the
content, in some embodiments only those snippets that come
from the content of the associated document have Fragment

Hyperlinks created for them.

Process each document in the search results set. First see if
any unprocessed documents remain 1810. If all documents
have been processed, return the altered results 1815 to the
invoking procedure. Otherwise, unprocessed documents
remain. Select an unprocessed search result document 1820

1.
2.
3.
4.

US 9,356,574 B2

81

and apply the actions described below to it. (The remainder of

this procedure applies to the selected document.)

In order to construct the Fragment Hyperlinks, the URI of
the hyperlink associated with the snippets is parsed to be sure
that there are no Fragment Identifiers of the embodiment
already in that URI. Any that are found are removed 1825.
The result becomes the URI prefix for the document being
processed. Each of the Fragment Identifiers created for this
document will be prepended with this URI prefix, in order to
create a Fragment URI.

Next do 1830 the following, according to the details pro-
vided in the process 5500 of FIG. 55:

1. Generate an Overall Fragment URI and an associated
ordered set of snippet strings.

2. For each of this document’s snippets generate a Fragment
URI and an associated ordered set of snippet strings.
Determine 1835 if the user agent requested Fragment

Hyperlinks, if the document being processed by this loop is

Magl.ink Friendly, or if the search engine is configured to

produce version 1 indirect Fragment Hyperlinks for search

results. If any are true, 1840 create a Normal-Mode Fragment

Hyperlink for each URI generated above. Set the href

attribute to the generated URI. Hyperlinks are given internal

attributes that contain the snippet or snippets of the hyperlink,
in range order, from which the hyperlink was constructed. In
some embodiments the internal attributes containing the snip-
pets have the name ‘maglink_snippet’, followed by its ordinal
position as a string. Thus, the first has the name “maglink-

_snippet1”, the second “maglink_snippet2”, and so on until

there is one attribute for each snippet range covered by that

Fragment Identifier.

These internal attributes are used for both version 1 and
version 2 Fragment Identifiers. They associate the applicable
snippet text with an individual hyperlink. In some embodi-
ments their function is two-fold. They provide a convenient
way to connect the snippet text with the rest of the hyperlink,
so that snippets are associated with history or bookmarks
entries. They also can be used to help during recovery. If a
user activates a version 2 Fragment Identifier that no longer
matches anywhere in the document, the snippets can be
recovered from the attributes and used to find similar content
in the same document or the same or similar content in
another document, as will be described later.

In alternative embodiments the version 2 Fragment Iden-
tifier is constructed by directly encoding the snippets into the
Fragment Identifier (without rolling hash function values),
and the snippets are simply searched for in the document. This
search could be more sophisticated and include essentially
the recovery procedure for version 2 Fragment URIs
described below. However, such recovery activities are inef-
ficient relative to the canonical form and hash based identifi-
cation of the intended content, so one benefit of the other
embodiments is speed. In addition, not all version 2 Fragment
Identifiers are made from artificially short content such as
snippets, and like version 1 Fragment Identifiers can include
whole or nearly whole documents; for example, see FIG. 52
where a version 2 Fragment Identifier is sent to user agents to
verify the majority of the content of a whole document. Thus
usage of FIG. 52 cannot be accommodated by whole string
based version 2 Fragment Identifiers of alternative embodi-
ments.

If the user agent did not request Fragment Hyperlinks and
the document is not Magl.ink Friendly, create 1845 a Safe-
Mode Fragment Hyperlink for each generated URI. The href
attribute is set to the URI prefix and the maglink href
attribute is set to the generated URI. The associated snippet
strings become attributes of the Fragment Hyperlink starting

10

15

20

25

30

35

40

45

50

55

60

82

with attribute names “maglink_snippetl”, “maglink_snip-

pet2”, etc., until there is one attribute for each snippet range

covered by the Fragment Identifier.

In some embodiments, the Overall Fragment Hyperlink
will appear as a small icon or logo style image located to the
right of the conventional hyperlink for the document being
processed. When a user clicks on the image, the document
will be opened and all of the snippets will be highlighted or
otherwise distinguished. To add the Overall Fragment Hyper-
link to the search results page, set its anchor image to the
designated image 1850 and append the modified hyperlink
after the conventional hyperlink for the document being pro-
cessed in the search results page.

Individual snippet Magl.inks can be associated with the
snippet text, in which case the text acts as anchor text and will
activate a hyperlink when clicked. However, snippet
Maglinks do not need to be associated with snipped text but
can be activated by clicking on an anchor image. If the user
agent requested that Maglinks be separate from snippet text
1855, make a small icon or logo style image into the anchor
image for the newly-created Fragment Hyperlink associated
with each snippet 1860 and append it after its associated
snippet in the search results. Otherwise, make the snippet’s
display text into the anchor text 1865 for the associated Frag-
ment Hyperlink and replace the display text with the Frag-
ment Hyperlink in the search results page. Note that when
rendered, identical text is displayed but the snippet becomes
the anchor text for a Fragment Hyperlink. Return to look for
another unprocessed document 1810 in the search results set.

FIG. 55 illustrates the process 5500 of creating Fragment
URIs for search results at the search engine for a single
document. In some embodiments, version 1 Fragment URIs
are generated by default; the search engine can also be con-
figured to generate version 2 Fragment URIs. Note that all of
the information used to create version 2 Fragment Identifiers
is used to create version 1 Fragment Identifiers.

Inputs 5505 for this process include:

Input: Boolean, true if “full relevant content” Fragment URIs
are requested.

Input: Boolean, true if full sentence Fragment URIs are
requested.

Input: Boolean, true if aggregated snippet ranges in Fragment
URIs are requested.

Input: Boolean, true if the document is internally marked
Magl.ink Friendly.

Input: The URI prefix for the document.

Input: The document’s Common DOM Form.

Input: The snippets” Common DOM Form ranges that are to
be displayed in search results, each in association with the
Common DOM Form range of the content that the search
engine identified as relevant, from which the snippet was
taken. The associated content ranges are also referred to as
content ranges below. (Note that the ranges used here iden-
tify beginning and ending objects as opposed to the bound-
aries between objects.)

Input: Identification of any subsets of the snippets that are
associated rich snippets. This can be empty.

If full relevant content is not requested 5510, set the asso-
ciated content range to the range of the snippet. Specifically,
5515 for each snippet that is not identified as part of a rich
snippet subset by the input (is not a rich snippet), replace the
snippet’s content range with the range of the snippet itself. In
either case determine if full-sentence Fragment URIs were
requested 5520. If so, expand 5525 each associated content
range to include full sentences, provided the section contain-
ing the snippet uses full sentences. (This expansion to full
sentences is a simple language-specific transformation.)

US 9,356,574 B2

83

Content ranges can overlap with each other. Rather than
maintaining separate overlapping ranges, they are consoli-
dated in some embodiments. To this end, accumulate sets of
overlapping associated content ranges 5530 into combined
associated content ranges for each affected snippet. Often a
snippet’s associated content range is unchanged by this accu-
mulation, since overlaps might not occur. Next create a ver-
sion 1 Overall Fragment Identifier 5535 using each distinct
associated content range (because of accumulation, two or
more snippets could have the same content range) in the order
in which it appears in the Common DOM Form and append
the Overall Fragment Identifier to the URI prefix to make the
Overall Fragment URI. Creation of a version 1 Fragment
Identifier is done according to the procedure 1200 described
in FIG. 12. Associate this created Fragment URI with the
ordered set of all snippet strings, in order of their appearance
in the Common DOM Form.

If Fragment URIs with aggregated snippet ranges 5540
were requested, create them. For each snippet create a version
1 Fragment URI according to the procedure 1200 described in
FIG. 12 and associate it with the snippet 5545. The Fragment
Identifier of each Fragment URI is created using the same
ranges as the Overall Fragment Identifier, but the range cor-
responding to the particular snippet (for which the Fragment
Identifier being created) is made the first range. This first
range will be scrolled into view when the Fragment Identifier
is interpreted. Append each Fragment Identifier to the URI
prefix to create the corresponding Fragment URI and associ-
ate the Fragment URI with an ordered set of all of the snippet
strings in order of appearance in the Common DOM Form,
except for the string associated with the snippet, which is first
in the set. Return the Overall Fragment URI 5560 and its set
of ordered snippet strings. Also return the original snippet
ranges passed as input, each together with its associated Frag-
ment URT and ordered set of snippet strings. By default, some
embodiments are configured to return indirect Fragment
URIs; they can also be configured to return the direct forms of
the URIs. A benefit ofusing the indirect form is that the search
engine can return the indirect forms to any user agent (typi-
cally browser), and in this way advertise the capability; for
example, as described in FIG. 46.

If Fragment URIs with aggregated snippet ranges 5540
were not requested, create a version 1 Fragment URI for each
snippet 5550 according to the procedure 1200 described in
FIG. 12 and associate it with the snippet. Use the snippet’s
associated content range (which may have been replaced
5515 with just the snippet range) to create the Fragment
URTI’s Fragment Identifier. Associate the snippet string of the
snippet with each Fragment URI (a set of strings having
exactly one string). Return the Overall Fragment URI 5560
and its set of ordered snippet strings. Also return the original
snippet ranges passed as input, each together with its associ-
ated Fragment URI and ordered set of snippet strings.

FIG. 19 illustrates the processing 1900 of search results at
the user agent to create Fragment Hyperlinks for content
snippets. This alteration is described for a search results web
page as presented by a browser, which represents it internally
in an HTML DOM. Since each search engine uses different
HTML markup and displays its results differently, the DOM
instance for the search results web page is parsed according to
rules created specifically for that search engine. This parsing
is straightforward in concept, since any such web page must
make visual sense as displayed to the user, which means for
example that content snippets will be visually associated with
the hyperlink for the documents from whence they came.
Thus the parser first finds document hyperlinks and then
looks for nearby (and subsequent, in every instance so far

40

45

50

84

encountered) content snippets. However, the robustness of
any such parser is in principle affected by the fact that this
parsing may be done without cooperation of the search engine
enterprise that produced the search results. Therefore the
search engine enterprise could make superficial changes that
require modification of parser details.

This process 1900 begins by parsing 1905 the search
results web page DOM from the beginning of the page to
identify the first hyperlink to a search result document. If no
such document hyperlink is found 1915 then processing halts
1920. Otherwise a document has been identified in the search
results; unless otherwise stated, the remainder of this proce-
dure applies to the identified document.

Continue parsing 1917 in order to find any text snippets
associated with the document. The parsing qualifies each
snippet as potentially searchable in the document. It is only
potentially searchable because not all snippets that the search
engine associates with a document are in fact document con-
tent; for example, they may be general descriptions of the
document as a whole. This parsing cannot in general make
that distinction. However, if for some particular search engine
such a distinction could be made, then snippets that do not
appear as document content should not be qualified. Because
a search engine may update a web page without changing all
of'its content, it is also necessary for this parsing to establish
if a snippet has already been processed; if there is already a
Fragment Hyperlink for the snippet in the DOM then it is not
qualified.

Ifno qualified snippets for this document were found 1925,
then processing for this document halts and parsing for hyper-
links to search results documents resumes 1910. If qualified
snippets were found 1925, continue processing the document.
The document’s hyperlink is parsed to be sure that there are
no Fragment Identifiers of an embodiment already in the URI
and any that are found are removed 1930. The result becomes
the URI prefix for the document being processed and it will be
prepended to any Fragment Identifiers created for this docu-
ment, in order to create a Fragment URI.

Next do 1935 the following, according to the details pro-
vided in the process 5600 of FIG. 56:

1. Generate a version 2 Overall Fragment URI and an asso-
ciated ordered set of snippet strings.

2. For each of this document’s snippets, generate a version 2
Fragment URI and an associated ordered set of snippet
strings.

Create 1940 a Normal-Mode Fragment Hyperlink for each
URI generated above. The hrefattribute is set to the generated
URI. The hyperlinks are given internal attributes (which are
not part of the URI) that contain the snippet or snippets, in the
same order their corresponding ranges appear in the Frag-
ment Identifier, from which the hyperlink was constructed. In
some embodiments the internal attributes containing the snip-
pets have the name ‘maglink_snippet’, and each is followed
by its ordinal position as a string. Thus, the first has the name
“maglink_snippetl”, the second “maglink_snippet2”, and so
onuntil one for each range in the Fragment Identifier has been
given. This is done to facilitate user agent actions when the
user activates such a hyperlink. A beneficial effect of adding
these “maglink_snippet” attributes is that the snippet can
readily be associated with its range in a Fragment Identifier,
even when the Fragment Identifier has multiple ranges.

Using the new Overall Fragment Hyperlink, make 1945 a
small icon or logo style image into the anchor image of the
Fragment Hyperlink, which is appended after the conven-
tional hyperlink for the document in the search results page.

Determine 1950 if the user agent requested that Magl[inks
be separate from snippet text. If the user agent is configured so

US 9,356,574 B2

85

that MaglLinks will be separate from snippet text 1960, make
a small icon or logo style image into the anchor image for the
newly-created Fragment Hyperlink associated with each
snippet and append it after its associated snippet in the search
results. Otherwise, make the snippet’s display text into the
anchor text 1955 for the associated Fragment Hyperlink and
replace the display text with the Fragment Hyperlink in the
search results page. Note that when rendered, identical text is
displayed but the snippet becomes the anchor text for a Frag-
ment Hyperlink.

When all qualified snippets for the document have been
processed, continue 1910 parsing the search results web page
to identity additional document hyperlinks. If no such docu-
ment hyperlink is found 1915 then the search results page is
1920 complete. The browser automatically displays the
altered DOM of the page in its new form. The user may
interact with it, perhaps by selecting to activate an inserted
Fragment Hyperlink.

FIG. 56 illustrates the processing 5600 of search results for
a single document at the user agent to create Fragment Hyper-
links. Creation of version 2 Fragment Identifiers has distinct
advantages because the creation of version 1 Fragment Iden-
tifiers at the user agent would require downloading every
document in the search results as part of the hyperlink cre-
ation process, which is relatively costly in time and compu-
tation resources. The construction of version 2 Fragment
Identifiers is described later in this document.

Inputs 5605 for this process include:

Input: Boolean, true if aggregated snippet ranges in Fragment

Hyperlinks are requested.

Input: The URI prefix for the document.
Input: An ordered set of snippet strings.

Identify 5608 any subsets of the snippets that are associated
rich snippets. For this purpose, a set of consecutive short
snippets are presumed to be associated rich snippets. The
results can be empty. How short a snippet needs to be for this
determination is configurable and in part context determined.
A snippet shorter than a configurable number of characters
(by default 18) is provisionally considered a rich snippet. If a
snippet is adjacent to a snippet already provisionally deter-
mined to be a rich snippet, and it is shorter than a configurable
number of characters (by default 28), then it is provisionally
considered a rich snippet. Each maximal (longest possible)
set of consecutive provisional rich snippets is identified as a
distinct set of associated rich snippets. Typically at most one
set of rich snippets is identified by application of these rules.

Create a version 2 Overall Fragment Identifier using each
snippet in the same order as was used for the ordered set of
snippet strings that were input. (Version 2 Fragment Identifi-
ers are created according to the procedure 2000 described in
FIG. 20.) Append the Overall Fragment Identifier to the URI
prefix to create the Overall Fragment URI. Associate the
ordered set of the snippet strings with this Overall Fragment
URI.

Next, for each snippet that is a rich snippet (i.e., identified
as part of a rich snippet subset), associate 5615 the whole
identified subset of related rich snippet strings with each rich
snippet in the set, in the order that the snippets appear in the
input. For snippets that are not rich snippets, associate a set
that only contains the snippet string itself.

Determine 5620 if aggregated snippet ranges in Fragment
Identifiers have been requested. If they have, create them as
follows: For each snippet, create a version 2 Fragment URI
according to the procedure 2000 described in FIG. 20 and
associate it with the snippet 5625. The Fragment Identifier for
each Fragment URI is created from the same strings, but the
range associated with the particular snippet for which a Frag-

10

20

25

30

40

45

60

86

ment Identifier is being created is set as the first range in the
Fragment Identifier so that the snippet will scroll into view
when the Fragment Identifier is interpreted. If the snippet
being processed is a rich snippet, then the other ranges from
the set of associated rich snippets follow the first range.
Append each Fragment Identifier to the URI prefix to obtain
a Fragment URI and associate it with the ordered set of all of
the snippet strings, in the same order of appearance as their
associated ranges have in the Fragment Identifier.

If aggregated snippet ranges in Fragment Identifiers 5620
have not been requested, for each snippet create 5630 a ver-
sion 2 Fragment URI using the procedure 2000 described at
FIG. 20 and associate it with the snippet. The Fragment
Identifier for each of these Fragment URIs is created using the
snippet string set associated with the snippet; one range of the
Fragment Identifier is created for each snippet in the set.
Associate the snippet string set (as an ordered set of strings)
with each created Fragment URI.

Return 5635 the Overall Fragment URI and its associated
ordered set of snippet strings. Also return the input snippets,
each together with its associated Fragment URI and ordered
set of snippet strings.

FIG. 20 illustrates the process 2000 of creating version 2
URIs using Fragment Identifiers created from only the target
strings. This type of Fragment URI is needed because it can be
impractical in some circumstances to create a version 1 Frag-
ment Identifier. Version 2 Fragment Identifiers do not involve
finding a unique canonical prefix or suffix, and in general no
more may be known about the document than that it has the
target string or strings when the Fragment Identifier is cre-
ated. Therefore, version 2 Fragment Identifiers cannot ensure
uniqueness of a match. Further, the construction cannot cal-
culate precisely how many hash bits are required to distin-
guish n-grams in the document. However, in some circum-
stances these drawbacks are not severe issues. If only the
target string was ever known by the end user, and if it is long
enough that there are only likely to be a few matches, then its
non-uniqueness in the document is of little or no harmful
consequence. For example, snippets produced by search
engines for interactive display are typically long enough to
limit the number of matches and the user perusing search
results usually knows nothing about the rest of a document’s
content.

Both version 1 and 2 Fragment Identifiers constructed by
search engines can identify ranges in a document that are
longer than their associated search engine result snippets.
Snippet length is limited in a search results page, and cannot
be as long as may be most appropriate for some search results.
Thus, association of a Fragment URI with a snippet does not
necessarily mean that the Fragment URI identifies precisely
that snippet in the target document; it may identify more than
the snippet. For example, it could identify the complete sen-
tence or paragraph from which the snippet was taken.

Inputs 2005 to the process 2000 are:

Input: A set of one or more Unicode strings.

Input: A URI

Input: Boolean indicating whether this is being created by a
user agent from a search result snippet or snippets.

Input: Boolean indicating whether this is being created by a
search engine for search results.

Input: Boolean indicating if images are to be interpreted as
text nodes.

Input: Boolean indicating if images are never to be interpreted
as text nodes.

Each input string 2010,2015 is processed in order, one at a
time, and this loop applies to the currently chosen string. The
order is significant since, if there is more than one range

US 9,356,574 B2

87

created, the first range appearing in the Fragment Identifier
will be the one scrolled to when the Fragment Identifier is
used.

The string is converted to its Canonical Form 2020. Some
punctuation characters, including whitespace, are removed
entirely. All characters that have a lower case form are con-
verted to lower case. All remaining characters are placed in
sequence, which is the Canonical Form. This Canonical Form
is called the Canonical Target. Note that search engines do not
accurately or consistently process whitespace; for example,
sometimes search engines create terms by improper concat-
enation. By elimination of whitespace in the version 2 Frag-
ment Identifiers we concatenate all terms and avoid that issue.
Moreover, in some languages spaces have no particular mean-
ing and do not determine term boundaries.

The hash of the Canonical Target is calculated 2025. This is
the same hash as used for version 1 Fragment Identifiers,
which means the same function according to process 200 of
FIG. 2.

The Canonical Target is partitioned 2030 into equal sized
segments, except for the last segment which may be a remain-
der of smaller size than the rest. The number of segments is
configurable, and the implementation can accept any number,
but in some implementations the default is 15 segments plus
the remainder. Most often there will be 16 segments though
occasionally there will only be 15. The size of the segments is
determined by dividing the number (by default 15) into the
length of the Canonical Target in code units. The segment size
is encoded into Fragment Identifiers so that any number of
segments can be used. If the result is less than 1 code unit per
segment, then segments of 1 code unit are used unless the
Canonical Target is less than 4 code units in length, in which
case it is not partitioned. This is indicated by encoding the
integer for the length of each segment as zero and then drop-
ping the integer encoding for the number of bits and the bit
array from the encoding. The result is the partitioned Canoni-
cal Target. The hash is calculated for each segment of the
partitioned Canonical Target. The high order (first) m bits
from each hash are selected and are concatenated into a bit
array, preserving the order of the segments in the range. In
some embodiments, the value of m is configurable and by
default is 16. This value is configured in conjunction with the
number of segments and for similar probabilistic guarantees
the number of segments rises as the number of bits per seg-
ment falls. As with the number of segments, some embodi-
ments (when interpreting a Fragment Identifier) accept arbi-
trary values for m, which is encoded into each Fragment
Identifier.

There are usually 16 segments, so with 16 bits per segment
hash there are usually 256 bits in a partitioned hash, which
means that a partitioned hash in some embodiments by
default have more bits than the rest of the range encoding.
This can be lowered, but the consequences of doing that
should be understood. With 16 bits per hash, if any contiguous
4 segments match then the probability that the match is not the
same as in the target is small, about 1 in 256 billion in a 1
mega-character document, which means that about 25% of
the whole can be recognized positively anywhere in the docu-
ment. If matching 50% of the whole anywhere were good
enough, then nominally 8 segments with 16 bits each, for a
total of 128 bits, would suffice. It is important to recognize
that placing fewer bits in each hash increases the number of
spurious individual matches. Each 16 bit hash will, on aver-
age, randomly match once in every 65K positions. If there are
16 of them, then random matches occur, from one of the
segment hashes, every 4K of the document. Thus, for a 1
mega-character document, there would be in aggregate about

10

15

20

25

30

35

40

45

50

55

60

65

88

256 random matches. This number rises exponentially as the
number of bits in each segment hash is reduced, which
increases the computation cost of finding matches.

This completes the processing for the current string (except
for encoding the results into the Fragment Identifier). If there
are one or more unprocessed strings then the processing con-
tinues from the point of the check for unprocessed strings
2010.

If there are 2010 no more unprocessed ranges, then 2035
the URI for the present document is examined for Fragment
Identifiers of this embodiment and any that are found are
removed. The result is the URI prefix. Calculate the hash of
this prefix. Also create the time stamp for the resulting Frag-
ment Identifier as the current UTC seconds since Jan. 1, 1601.
This is done exactly as described 1250 above for FIG. 12.

Create 2040 the Fragment Identifier. While the specific
values encoded differ from version 1 Fragment Identifiers, the
encoding techniques are the same as is described 1255 above
for FIG. 12.

The following information is encoded:

1. The two character string “‘#7

2. An integer version number identifying this particular Frag-
ment Identifier version, which is version 2. In a concrete
implementation of an embodiment, this number in effect
identifies the encoding used. This specification describes
two such example versions. However, this element sup-
ports any number of versions since an arbitrary integer is
encoded to identify the version.

3. An integer representing the number of Coordinated Uni-
versal Time (UTC) seconds since Jan. 1, 1601, when this
fragment identifier was created.

4. A bit array of the high order bits of the hash of the URI
prefix. This uses 24 bits and this size is fixed.

5. An integer representing the number of ranges in the Frag-
ment Identifier, i.e., the number of strings represented.

6. A sequence of range encodings, one for each string, which
consist of:

a) A Boolean that indicates whether this range was created
by a search engine for search results. This is set to true
only by search engines serving out search results with
Fragment Hyperlinks.

b) A Boolean that indicates whether this range was created
by a user agent from search results. This is normally set
to true only by a user agent that creates hyperlinks asso-
ciated with search result snippets from a search engine.

¢) An “images as text nodes” Boolean, which indicates that
at least one image with non-trivial alternative text calf
attribute in HTML) contributed to the string content.

d) An “images are never text nodes” Boolean, which indi-
cates that images were not taken as text nodes and did
not contribute to the text in the string. If both this Bool-
ean and the “images as text nodes” Boolean are false,
then it is unknown whether image text is represented.
Unknown is generally the case when the Fragment Iden-
tifier is constructed by a user agent from a simple string
or snippet taken from a search engine result.

e) An integer that indicates the length of the string in code
units.

f) A bit array of the high order bits of the hash of the
Canonical Target. The number of bits is HashWidth.

g) An integer indicating the length of a segment in the
partitioned Canonical Target.

h) An integer ‘PartitionedHashWidth’ indicating the width,
in bits, of the hash values for each segment in the parti-
tioned Canonical Target. By default this value is 12 in
this example.

US 9,356,574 B2

89

1) A bit array of the high order bits in sequence of the hashes
of'the segments of the partitioned Canonical Target. The
number of bits for each segment is PartitionedHash-
Width. The number of segments is the length of a seg-
ment divided into the length of the Canonical Target,
rounded up.

7.Abitarray of the high order bits of the hash of the Fragment

Identifier encoding, including the ‘7’ at the beginning but

not the ‘#’. The encoding that is hashed is the elements 1

through 7; i.e., this element itself is not included in the

hash. The number of bits included in some embodiments is

30 and is fixed. Thus, this element is not part of the ASN.1

encoding, but is the hash of the ASN.1 encoding, and is

directly converted to 5 characters, each representing 6-bit
pieces of the hash, using the same Base64 encoding.

Note that the pair of Boolean values for the alternative text
of images is necessary for these ranges because we need a
way to represent that image text (VnT text) participation is
unknown. L.e., we represent 3 values, yes, no, and unknown.
It is an error if both Booleans are set, but if both are set then
it is also interpreted as unknown and the Fragment Identifier
is not rejected in that case.

The new Fragment Identifier is appended 2045 to the URI
prefix to create the new Fragment URI, which is returned
2050.

FIG. 21 illustrates 2100 actions of a user agent when a user
selects 2105 a hyperlink for activation in some embodiments.
First check 2110 to see if it has a Fragment URI of this
embodiment. This is done by parsing the URI of the href
attribute and checking for a valid Fragment Identifier of this
embodiment or a Surrogate URI, and if not then similarly
parsing and verifying 2110 the maglink_href attribute, if
there is one. If the hyperlink does not have a Fragment URI of
this embodiment, then the value of the href attribute is
assigned 2125 as the hyperlink’s URI.

If a Fragment URI of this embodiment is found 2110 in
either the href or maglink_href attributes, then it becomes
2130 the hyperlink’s URI.

Create 2135 a volatile (not persisted) record of the user’s
activation of the URI. This record represents an association
between the URI to be activated and:

1. the full URI of the current document, including any Frag-
ment Identifiers; and

2. any snippet or snippets associated with the hyperlink being
activated. The hyperlink has attributes for any such snip-
pets, which in an example implementation has attribute
names “maglink_snippetl”, “maglink_snippet2”, etc. This
occurs if the current document is a search engine results
document and the activated hyperlink is associated with

snippets. These attributes were previously inserted 1849,

1845,1940 into search engine result hyperlinks according

to FIG. 18 and FIG. 19.

This record is stored in temporary (volatile or not-per-
sisted) memory for later lookup when the display context
exists for the URI that is being activated (e.g., after the HTML
“window” object for this document activation exists and can
be accessed). This is set up in such a manner that the snippets
(if any), the search criteria, and the URI for the originating
document can be retrieved using only the URI from the hyper-
link. Given the URI of the originating document, the naviga-
tion history Content Record of the originating document can
in turn be retrieved.

The URI of the hyperlink is activated 2140 complete with
any Fragment Identifiers.

In alternative embodiments, some Fragment Identifiers
will be inaccessible to any content based scripts. In other
words, the user agent (e.g., web browser) carefully keeps

10

15

20

25

30

35

40

45

50

55

60

65

90

specially delimited Fragment Identifiers isolated from active
content of documents. The special delimiter is advanta-
geously not “#” or ‘#7°, since both of these appear at the
beginning of Conventional Fragment Identifiers that are pres-
ently visible to scripts, and such a choice would break some
current web behavior. However, the sequence ‘##° works even
though ittoo may appear in pathological circumstances under
the de-facto existing specifications. In other words, existing
practice does not effectively preclude the appearance of “##’
at the beginning of a Conventional Fragment Identifier. The
new delimiter and anything following it in a URI can be seen
only by the user agent code and specifically not by content
scripts. It will be removed by conforming browsers and other
user agents, and placed in memory only accessible to the user
agent and its extensions prior to activating a URI having such
a Fragment Identifier of any kind delimited in this manner.
Some embodiments use such a delimiter, which would have
distinct benefits if there was an existing standard specification
for it. In the absence of such a specification, some embodi-
ments beneficially use # followed by some alphabetical char-
acter because, in present circumstances, the ‘##’ is more
likely to cause confusion on the part of existing user agent
software and content scripts if they should encounter it. The
example implementation described herein uses “#7”, but
other implementations could use other delimiters, including
“#” without following it with an alphabetical character. Note
that, regardless of all attempts provided herein to isolate ‘#7°
delimited Fragment Identifiers from content scripts, they will
nevertheless encounter such Fragment Identifiers of this
embodiment under some circumstances until such a time as
there is a standard specification to prevent it and user agents
conform to the specification. For example, if a user manually
pastes a Fragment URI of this embodiment into a browser that
behaves according to current practice, then the content scripts
for the web page will have access to the entire URI, including
the Fragment Identifier.

FIG. 22 illustrates preliminary actions 2200 of the user
agent when activating (opening) a document identified by a
URI. These actions beneficially take place when the user
agent has identified a display context, which for this HTML
example is identified by a “window” object according to the
W3C specifications, but has not yet sent any HT'TP or other
protocol requests to external servers to retrieve information
related to the URI or the document it represents. After these
actions the URI activation proceeds to retrieve and display the
document according to existing practice except that future
actions of this specification are taken when various events
occur. Thus, this process 2200 provides for the described
future actions to occur. For the HTML document example
described here, and in accordance with the standard HTML
DOM model, these actions take place in response to HTML
DOM model notifications. The notifications specified for use
are described in W3C standards documents for the HTML
DOM model and are supported by user agents conforming to
those specifications. Before sending any HTTP requests to
activate a URI, the URI is parsed 2205 to identify any Frag-
ment Identifiers of this embodiment.

Attempt to access 2208 the volatile record created by the
procedure 2135 presented in FIG. 21 that describes the user’s
selection of this URI for activation, using the full URI for the
lookup. Note that it need not be a Fragment URI; i.e., this
lookup attempt occurs for all URI activations. Because acti-
vation can occur by means that do not involve activating a
hyperlink embedded in the document of a previously acti-
vated URI this record may not exist. For the rest of the
description of this process 2208, this identified volatile record
is called the “Volatile Record” (that may not exist).

US 9,356,574 B2

91

If'there is no Content Record in the local navigation history
that matches the current URI, then create 2208 a new navi-
gation history Content Record for it.

While the user agent keeps navigation history Content
Records including the title string and description string (if
they exist), at this point in the process 2200 of F1G. 22 they are
not yet retrieved at the user agent so they cannot be stored
with a new Content Record at this time. Even though the
Content Record may be incomplete, the URI Service needs
information immediately in order to target advertisements for
the current user before the document is opened. Moreover, the
URI Service may have the strings by virtue of it being a
version 1 Fragment URI or due to prior access to that URI by
other user agents, users, or users’ roles. The URI Service may
also be a search engine and have that information for that
reason. Therefore, the URI Service navigation history for this
user’s role will be updated in the course of this process 2200
with the information that the user agent has at this point in
time, and the service will in turn use any additional content
information it may already have for the URI and its document
for targeting.

The information that the URI Service has for a URI may
have become inaccurate or stale through document editing or
URI changes. Even though it may be inaccurate, the adver-
tisement targeting relating to opening the URI uses whatever
information the URI Service has. If the current information at
the URI Service is inaccurate, then it will be updated with
accurate information after the first user agent embodiment
opens the document and discovers the inaccuracy or missing
information. For example, if a Simple Content Record at the
URI Service has stale strings for the title or description, then
the user agent will discover this after opening the document
and finding that it must update the local Content Record for
that URI. Once updated locally, synchronization propagates
that information to the URI Service. In this way, unlike cur-
rent schemes for indexing web content, inaccuracy at the URI
Service is discovered and corrected by the first access by
some user that results in discovery of the new information.
Until the content changes again, processing based on that new
information for other users will be accurate.

If the Volatile Record exists, there are search snippets
stored in it, and the Content Record does not yet have asso-
ciated snippets, then the snippets are processed 5101 accord-
ing to FIG. 51 and then stored 2208 as associated content
record snippet strings. (Note that there are two starting points
in FIG. 51.) In most circumstances where the URI is a version
2 Fragment Identifier, the output of the process 5101 of FIG.
51 is the same as its input, namely a snippet or ordered set of
snippets that is small enough to be used (after concatenating
if there are multiple of them) as a single search criterion. This
result is also small enough to display in the expanded history
displays of history and bookmarks.

An Activation Record is created and its Destination is set
2208 as the identifier of the Content Record (which may have
just been created) for the current activation context. If the
current URI is a search engine query then this Activation
Record has no Previous. If it is not a search engine query, then
the Previous is set to the navigation history Content Record
identifier stored in the Volatile Record, provided the Volatile
Record exists and has a navigation history Content Record
identifier; if it does not exist or there is no Content Record
identifier, then there is no Previous for this new Activation
Record.

Store the identifier of the new navigation history Activation
Record with this display context (an HTML “window”
object). The identifier can be retrieved from this document’s
display context (window object) so long as it exists.

5

10

15

20

25

30

35

40

45

50

55

60

65

92

Once these updates to the local navigation history have
occurred, the changes to the navigation history for this acti-
vation are sent 2208 to the URI Service in order to keep it
synchronized and so that queries against the full history for
the user’s role can be performed in order to target advertise-
ments for the user. In particular, this notifies the URI Service
of the activation before the document content is requested
from its server. If the activated URI is a Surrogate URI of an
embodiment, then this information will nominally arrive at
the URI Service slightly before the request for content arrives
at the Redirect Service. If the user agent identifies itself as an
embodiment in the request to the Redirect Service for content
(which it does if the user agent is an implementation of some
embodiments), then it is known that this update has occurred
or is underway.

The user and his role are identified to the URI Service in
some embodiments through the cookie that, according to
standard HTTP specifications, goes with HTTP protocol
requests.

Delete 2208 from memory the Volatile Record that was
previously stored 2135.

If there are no Fragment Identifiers of this embodiment
found in the URI 2210 then the activities of the process 2300
of FIG. 23 are registered 2230 to be undertaken whenever the
DOM instance for the document of this activation changes. In
the example implementation this means registering the code
that implements FIG. 23 for a DOM change event according
to the W3C specifications of DOM events for HTML and
XML. When the DOM is changed the actions specified in
FIG. 23 are undertaken. Then the URI activation continues
2235 according to normal user agent behaviors, which is
typically to download the content from a source such as the
web and display the document.

If there are one or more Fragment Identifiers of this
embodiment 2210 and this URI is not 2215 a Surrogate URI
then in an order-preserving manner parse 2220 the fragment
identifier of all types for validity. If they are not of this
embodiment they are ignored. Expand any multi-range Frag-
ment Identifiers into a sequence of single-range Fragment
Identifiers. This expansion is done by changing the count of
ranges to 1 in every resultant Fragment Identifier, keeping
only one set of range fields (each set of range fields can simply
be copied after parsing establishes where each range encod-
ing is), and recalculating the hash for each single-range Frag-
ment Identifier. The prefix of a URL (the part that precedes the
Fragment Identifiers) remains the same and its hash should
not be recalculated even if it does not match the existing URL
prefix. Validation succeeds even if the hash for the URL prefix
does not match. The sequence of validated (and possibly
expanded) Fragment Identifiers is stored 2220 in volatile
memory associated with the display context for the docu-
ment. For this HTML example it is associated with the docu-
ment’s “window” object. For the display of HTML docu-
ments the W3C has defined the “window” object, which is
also accessible from document based scripts; however, while
this memory is associated with the window in some embodi-
ments, it is isolated from any document based active content
(e.g., scripts). Thus in some embodiments the Fragment Iden-
tifiers are kept in memory which is associated with the docu-
ment but made inaccessible to scripts or other code associated
with the content of the document.

In some embodiments, a Surrogate URI is recognized by its
domain name, which is used for no other purpose. In other
embodiments there could be other means to recognize a Sur-
rogate URI; for example, the same domain name as the URI
Service could be used but with a path that is only used for
Surrogate URIs. In other embodiments the name of the server

US 9,356,574 B2

93

is unique and used only for Surrogate URIs; i.e., instead of
beginning with “www” the URI could uniquely begin with
“rdt”. In other embodiments the fact that it is a Surrogate URI
is recognized after redirection occurs and the new URI is
known to be a Fragment URI of this embodiment, in which
case the branch in the logic comes after the Surrogate URI
content is requested.

Remove 2223 all validated Fragment Identifiers from the
URI for this activation. This has the benefit of preventing the
web server for the document’s URI from discovering the
Fragment Identifiers, and achieves an original intent for frag-
ment identifiers of all kinds, this intent resulted in a standard-
ized rule that content servers would not be sent fragment
identifiers. While most user agents do not violate this intent
per-se, they run scripts from the content servers that access
Conventional Fragment Identifiers and have no provision to
prevent the scripts from sending Conventional Fragment
Identifiers or information dependent on them to the server.
This regularly occurs in modern browsers running scripts
from web pages. The behavior described here differs from
existing practice and specifications in that some embodi-
ments preclude any of the server’s code from seeing a Frag-
ment Identifier of the embodiment. It also has the benefit of
removing any opportunity for confusion by the web server’s
document scripts when they see Fragment Identifiers that they
cannot make sense of. Some document scripts are unable to
function properly when there is more than one fragment iden-
tifier of any kind; this occurs in part because the original
intent of Conventional Fragment Identifiers has been usurped
and circumvented by document scripts.

The activities of the process 2400 of FIG. 24A are regis-
tered 2225 to be undertaken whenever the user interactively
makes a selection in the document that was opened by this
activation. Typically this means registering the code that
implements FI1G. 24A for a selection change event. When a
selection changes due to user interactive input, then the
actions illustrated in FIG. 24A are undertaken.

The activities of the process 2300 of FIG. 23 are registered
2230 to be undertaken whenever the DOM instance created
for this activation changes. In the example implementation
this means registering the code that implements FIG. 23 fora
DOM change event according to the W3C specifications of
DOM events for HTML and XML. When the DOM is
changed the actions specified in FIG. 23 are undertaken.

If this is 2215 a Surrogate URI, then the activities of the
process 2450 of FIG. 24B are registered 2217 to be under-
taken whenever HTTP 302 or 303 redirects occur for this
activation context. In the example implementation this means
registering the code that implements FIG. 24B for an HTTP
redirect event associated with this activation context. When
an HTTP redirect occurs (HTTP redirects include 301, 302,
303, and 307 redirects) associated with this activation con-
text, the actions specified in FIG. 24B are undertaken. Note
that when the Surrogate URI is redirected to a Fragment URI,
according to FIG. 24B, the result is an activation of a Frag-
ment URI which in turn causes actions of this process 2200
for that Fragment URI.

Also if this is 2215 a Surrogate URI, embed 2217 an HTTP
header to notify the Redirect Service that this user agent is an
embodiment, including a version number. In an implementa-
tion this might be performed by code that is low in the pro-
tocol stack and run whenever an HTTP request goes out; in
that case the URI is inspected to determine if it is a surrogate
URI and the header is added to the request. According to the
usually followed convention, some embodiments use a cus-
tom header name that is prefixed with “X-"; an example
implementation uses the header name “X-Mag-Link-Agent”

10

15

20

25

30

35

40

45

50

55

60

65

94

with the assigned value having a prefix of “Maglink”. An
implementation version number follows the “Maglink”
string; for example, “Magl.ink54” for implementation ver-
sion 54 of an embodiment. This allows the Redirect Service to
know what the capabilities are of the embodiment, and
whether an upgrade from one implementation to another is in
order. If this header is not present, the Redirect Service
behaves as if the user agent is not an embodiment.

The URI activation continues 2235 according to normal
user agent behaviors, which is typically to download the
content and display the document. Again, an attempt to down-
load the content for a Surrogate URI results in the redirection
according to the Redirect Service, the actions of FIG. 24B
when the redirect response arrives at the user agent, and then
another activation for a Fragment URI according to this pro-
cess 2200.

Note that the manner in which navigation history informa-
tion is kept in some embodiments differs between the user
agent and the URI Service. The URI Service has the Common
DOM Form for all version 1 Fragment URIs and hence Sur-
rogate URIs (which in some embodiments map to version 1
Fragment URIs), so the URI Service can accurately generate
the title and description that appeared when the version 1
Fragment URI was created, as well as the target strings for
any version 1 Fragment URI. Therefore, as a matter of effi-
ciency at the service, the URI Service has no need to store
those strings separately with a Content Record.

FIG. 23 illustrates actions 2300 taken on DOM change
event notifications for documents opened in a user agent.
When such a notification occurs (as registered 2225 in FIG.
22), a check is made to determine if the document declares
2302 itself Maglink Friendly and whether the document has
been marked to indicate that the user agent is an embodiment.
If the document is Maglink Friendly but has not yet been
marked, then the user agent marks 2303 the document DOM
instance, indicating to the content scripts that the user agent is
an embodiment, by adding a new META tag node as a child to
the head node in accordance with the following HTML.:

<META name="Magl.ink_UserAgent”

content="Mag[ink”>.

This is done so that the page’s content scripts can deter-
mine that the user agent is an embodiment, but only under the
circumstance that the document is Maglink Friendly. If it is
not MaglLink Friendly then it is beneficial to deny that knowl-
edge to the document scripts in order to avoid any possible
accidental, deliberate, or even potentially malicious behavior
whereby the actions of content scripts differ depending on
whether a user agent is an embodiment. According to some
embodiments, such differing behavior is avoided by denying
this information to the scripts of documents that do not first
declare Maglink Friendliness.

Note that the declaration of MagLink Friendliness could be
temporarily missing from a DOM because it is not yet pro-
cessed into the DOM by the time the DOM change notifica-
tion occurs. It is important that DOM change notifications
continue to be processed until the nonexistence of the meta-
data in the DOM accurately implies that the document does
not declare Maglink Friendliness. While it is almost univer-
sally the behavior ofa web based document server in practice,
in some embodiments it is nevertheless the responsibility of a
document server when acting according to an embodiment to
ensure that the declaration of Magl.ink Friendliness is down-
loaded with the head of the document in advance of the
transmission of the <body> tag. This is beneficial in some
embodiments because it supports early and thereby compu-
tationally efficient un-registering for DOM change notifica-
tions for documents that are not MagLink Friendly, as they are

US 9,356,574 B2

95

downloaded, during a period when their DOM may be rapidly
changing. It is also the responsibility of the user agent to
process the document into the DOM in the order in which it is
received. This preservation of order is almost universally the
behavior of existing user agents. Those skilled in the art will
appreciate that various means to achieve comparable effi-
ciency could be used, including means that achieve such
efficiency less often or at differing levels of efficiency, and
that such efficiency could be sacrificed entirely without the
loss of other benefits of embodiments.

If no Fragment Identifiers of an embodiment are associated
2304 with the activation context (in HTML, the “window”
object) of the document display (which association would
have been made 2220 previously), then set 2306 a Boolean
variable <Unregister> to true.

If the document DOM is not already marked 2305 to indi-
cate that the user agent conforms to this specification and it is
not positively known 2306 that this document does not self-
declare Maglink Friendliness, then set 2309 the Boolean
variable <Unregister> to false.

If the title and description are not available 2308 from the
DOM instance (which is determined by querying the DOM
instance atthe current time, perhaps as itis being built), or not
enough of the DOM instance has been constructed to ensure
that the title and description will not be created later during
DOM construction, then processing halts 2310 for this pro-
cess 2300 of FIG. 23.

If the title and description are available 2308 from the
DOM instance (which is determined by querying the DOM
instance at the current time, perhaps as it is being built), or
enough of the DOM instance has been constructed to ensure
that the title and description will not be created later during
DOM construction, then the title and description of the cur-
rent document are compared 2311 with the document’s title
and description in the local navigation history. If they differ
2311, then the title and description are updated 2312 in the
local navigation history and the navigation history is synchro-
nized with the URI Service.

According to FIG. 23, this particular update activity 2312
only occurs if the URI is not a Fragment URI of the embodi-
ment. The title and description can change at any time but this
process will detect changes and notify the URI Service. If the
current user’s role has not accessed this URI before, then it is
added. If the current user’s role has accessed this URI before
but the title or description changed, information for this URI
is updated. Note that the Content Record for this URI at the
URI Service may have already been updated to the current
title and description due to the activities of some other user.

If the <Unregister> Boolean is 2313 true, then unregister
2314 this activation context (window) for DOM change noti-
fications before ending 2345 the process illustrated in FIG.
23.

If Fragment Identifiers of an embodiment are associated
2304 with the document display window (which association
would have been made 2220 previously), then a check 2315 is
made to determine if the time stamp for earliest unprocessed
DOM change is set. If not, then that time stamp 2320 and the
time stamp for the latest DOM change 2325 are both set to the
current time. If the time stamp for earliest unprocessed DOM
change is set 2315, then only the time stamp for latest DOM
change is set 2325 to the current time.

Since much of the processing for DOM change notifica-
tions need not be done for every DOM change, especially
when changes are occurring at a rapid rate, this processing is
deferred in order to reduce processing costs. Deferral may
occur repeatedly under circumstances of rapid changes. To
support such deferral, atime stamp is kept for the earliest time

10

15

20

25

30

40

45

50

55

60

65

96

when a DOM change occurred, and that time stamp remains
unchanged while processing for it is deferred. Note that the
processing itself is the same, whether there have been one or
hundreds of deferrals, except that more of the document may
be beneficially present for processing. These deferrals should
not go on for too long however, even if DOM changes con-
tinue, because such processing is of benefit to the user even if
the document is not complete. Since humans have such slow
reaction times relative to the rate of DOM changes possible
on a computer, this delayed processing benefits the user by
consuming computational resources at a slower rate without
causing the user to perceive annoying delays. Thus we delay
processing of changes based on human reaction times and
tolerance to delays. Those skilled in the art will appreciate
that these benefits may be achieved in a multiplicity of ways
and that many settings for delays and time limits will achieve
such benefits.

If the Fragment Identifier timer (there is a Fragment Iden-
tifier timer that causes further actions to occur when it fires) is
not set 2330 to fire within half a second from now, then set it
to fire 2340 in one half second and, when it fires, to cause the
actions 2500 of FIG. 25 to be undertaken; then this notifica-
tion process ends 2345.

If the Fragment Identifier timer is set to fire 2330 in half a
second or less, then a check is made against the time stamp of
the earliest deferred DOM change. If the earliest unprocessed
change occurred long enough ago 2335 (in some implemen-
tations this is configurable and by default is 2 seconds), then
even though there may have been rapid changes, do not
advance the timer forward to half a second from now, but
leave it to fire on schedule; end further activity for this noti-
fication 2345.

FIG. 24A illustrates actions 2400 taken when user input
based selection changes occur for documents opened from
Fragment URIs. When such a notification occurs (as regis-
tered 2225 in FIG. 22), for safety sake a check 2405 is made
to ensure that at least one Fragment Identifier is associated
with the activation. If not, then something went wrong and the
remedy is to unregister for the notifications 2410.

The idea of this processing 2400 is to give priority to
Fragment Identifiers of an embodiment, over all other sources
for making selections, except those that may be made inter-
actively by the user. Thus, we are registered for user based
selection change events; we do this processing so that we can
know that such an event occurred and we can (elsewhere in
FIG. 25) avoid interfering with the user’s selection choices.

Ifthe timestamp for earliest user input selection is set 2415,
then processing ends 2430.

The determination is made whether 2420 there is a selec-
tion active on the document that differs from any previous
selection made according to this specification, and that was
made by interactive user input. If all of these are true then the
timestamp for earliest user selection input is set to now 2425,
after which the processing of this notification halts 2430. This
test is useful since content scripts can change a selection after
activities of this specification have already made selections,
and only interactive user selections will have the ability to
alter the effects on the selection caused by Fragment Identi-
fiers of some embodiments for a pre-determined time inter-
val.

FIG. 24B illustrates actions 2450 taken when HTTP 302 or
303 redirect notifications occur for activation contexts that
were previously registered 2217 for notifications of such redi-
rects. If this redirect is not 2455 an HT'TP 302 or 303 redirect
message having a custom HTTP header called “X-Mag-Link-
Fragments”, then ignore 2460 this message and allow activa-
tion to proceed without modification of the redirect message.

US 9,356,574 B2

97

In what follows, this redirect is 2455 an HTTP 302 or 303
redirect message having a custom HTTP header called
“X-Mag-Link-Fragments”.

If the custom header contains 2465 a Conventional Frag-
ment Identifier, then search 2470 for the Conventional Frag-
ment Identifier in the redirect URI using string matching and
remove the matched Conventional Fragment Identifier from
the redirect URI.

Whether or not the header contains 2465 a Conventional
Fragment Identifier, append 2475 the Fragment Identifier of
this embodiment, also taken from the custom HTTP header,
to the redirect URI. Unregister 2480 for redirect notifications
for this activation context (HTML window) and allow the
URI redirect to continue 2485 with the modified URI.

In some embodiments, the value of the custom header
named “X-Mag-Link-Fragments” contains a Fragment Iden-
tifier and possibly a Conventional Fragment Identifier. The
Conventional Fragment Identifier, if there is one, is appended
to the redirect URI. An embodiment user agent parses the
value of the header to separate the two; however, there can be
only one or two hashes (“#”), and the Conventional Fragment
Identifier, if there is one, is the substring following the second
hash.

FIG. 25 illustrates the process 2500 undertaken when timer
events (created and set 2340 in FIG. 23 as well as here) fire
2505 for documents activated with URIs having version 1 or
2 Fragment Identifiers. Save 2508 the current document’s
“ready state” for later reference. The “ready state” of an
HTML document is defined by the W3C HTML specifica-
tions; a “ready state” of “complete” indicates that the docu-
ment content has been downloaded and the information pro-
cessed into the DOM. (Uses of “ready state” and “complete”
in this for FIG. 25 are in accordance with standard HTML
specifications.) The ready state is used later to determine if the
document was “complete”. This or an analogous check is
necessary for any document that can have a DOM available
for processing before the document is entirely downloaded or
otherwise available for display. Since the state could become
complete during or after processing the Fragment Identifiers,
save a copy of the ready state prior to doing any such pro-
cessing.

Stable as used in this procedure means that the DOM has
not changed, and no programmatic (i.e., non-interactive)
changes were made to any selections (if the user’s preference
for Fragment Identifier processing is to display Fragment
Identifiers using selections). The default value for success
stability, i.e., the configured time period to wait after success-
ful processing to ensure that the DOM is stable, is 10 seconds
in some embodiments. There is also a configurable value for
failure stability, which is the time period to wait after an
unsuccessful attempt to process Fragment Identifiers before
giving up. The default time period for failure stability in some
embodiments is also 10 seconds.

Some documents never stop changing the DOM (e.g., via
scripts), so it is necessary to have an overall timeout which is
by default 40 seconds. These time limits can vary over a wide
range and the main effect of overly long timeouts is unnec-
essary consumption of processor time. However, if timeouts
are too short then a content script could interfere with the
intended benefit of Fragment Identifiers.

If:

1. a) the user made interactive changes 2510 to the docu-
ment’s selection and the user’s preference is to use selec-
tions (as opposed to highlighting) to show ranges in docu-
ments, or
b) the Fragment Identifiers were successfully processed

2515 previously, and the DOM and selection (provided

5

10

20

25

30

35

40

45

50

55

60

65

98

the user’s preference is to display Fragment Identifiers
using selections) remained stable since that point; and

2. a) the document’s ready state (as saved 2508 previously)
was 2553 ‘complete’,

b) the Fragment Identifiers were successfully processed
2555 previously, and the DOM and selection (provided
the user’s preference is to display Fragment Identifiers
using selections) have been stable for more than the
configured time since Fragment Identifiers were last
processed successfully (the configured time for success
stability), or

¢) the overall time limit for the page has expired 2560;

then check 2548 temporary storage, which is set 4790 in F1G.
47 and F1G. 48, to determine if this activation was launched as
part of a Fragment Identifier recovery; if so, provide recovery
feedback to the URI Service according to the process 4900 of
FIG. 49. Update 2568 the distributed navigation history for
this user’s role. If the URI Service is also a search engine, then
information useful for maintaining the search index is
exchanged 2568 with the search engine. This information
includes whether the document access constituted a missing
indexed information event (MIIE), which occurs when a
Fragment URI is accessed from a search engine results docu-
ment (i.e., the Previous attribute of the Activation Record for
this activation identifies a Search Content Record) and at least
one range of the Fragment URI could not be found (i.e., a
recovery process was launched 2545 for this access). This
indexing support is performed according to the process 5200
of FIG. 52 and occurs here in some embodiments in conjunc-
tion with updating and synchronizing 2568 the navigation
history. Processing of Fragment Identifiers for this document
ends by unregistering 2570 for event notifications for this
document.

If:

1. a) the user made interactive changes 2510 to the docu-
ment’s selection and it is the user’s preference to use selec-
tions (as opposed to highlighting) to show ranges in docu-
ments, or
b) the Fragment Identifiers were successfully processed

2515 previously, and the DOM and selection (provided
the user’s preference is to display Fragment Identifiers
using selections) remained stable since that point;

2. the document’s ready state (as saved 2508 previously) was
not 2553 ‘complete’;

3.a)the Fragment Identifiers were not successfully processed
2555 previously,

b) the DOM has been 2555 stable for less than the config-
ured time since Fragment Identifiers were last processed
successfully (the configured time for success stability),
or

c)the selection (provided the user’s preference is to display
Fragment Identifiers using selections) has been 2555
stable for less than the configured time since Fragment
Identifiers were last processed successfully; and

4. the overall time limit for the page has not expired 2560;

then set 2565 the Fragment Identifier timer for this document

to fire at the earliest time when the page can have been stable
for more than the configured success stability time or when
the overall time limit will have passed. However, the timer is
set forward as needed to delay such processing until one half
second will have elapsed since Fragment Identifiers were last

processed. Note that the time of last processing was set 2523

previously (described below), after that most recent process-

ing completed.

If:

1. the user did not make 2510 interactive selection changes to
this document;

US 9,356,574 B2

99

2. a) the Fragment Identifiers have not been successfully
processed 2515 previously,

b) the DOM has not been stable 2515 since the last suc-

cessful processing, or

c)the selection (provided the user’s preference is to display

Fragment Identifiers using selections) has not been
stable 2515 since the last successful processing; and

3. it has been 2517 half a second or less since the last time
Fragment Identifiers were processed;

then set 2520 the Fragment Identifier timer for this document

to fire one half second after the time when this document’s

Fragment Identifiers were last processed. Note that, for timers

that can be canceled and reset, this setting or resetting should

not occur since we always set the timer to fire at least half a

second after last processing, but such timer events cannot

always be canceled. Some embodiments use timers that can
be canceled and, by using cancellation of timer events, the
activities of FIG. 25 are never scheduled to occur more than
one time in the future for a single document. The behavior
described in this paragraph for detecting 2517 that processing
is underway within half a second of last Fragment Identifier
processing helps to recover if for any reason a timer fires too

SOOM.

If:

1. the user did not make 2510 interactive selection changes to
this document;

2. a) the Fragment Identifiers have not been successfully
processed 2515 previously,

b) the DOM has not been stable 2515 since the last suc-

cessful processing, or

c)the selection (provided the user’s preference is to display

Fragment Identifiers using selections) has not been
stable 2515 since the last successful processing; and
3.ithas been 2517 more than half a second since the last time

Fragment Identifiers were processed;
then retrieve 2523 the Fragment Identifiers previously saved
2220 for this document and process 2523 them against the
document DOM, which is done according to the process 2600
of FIG. 26. When complete, set 2523 the time stamp for this
document’s Fragment Identifier processing to the current
time (now).

If the preceding processing 2523 was successful 2525 for
all Fragment Identifiers, then set 2550 the time stamp for
successful processing to the current time (now). Next set 2565
the Fragment Identifier timer for this document to fire at the
earliest time when the page can have been stable for more than
the configured time for success stability or when the overall
timer will have passed. However, the timer is set forward as
needed to delay such processing until one half second will
have elapsed since the last processing of Fragment Identifiers
for this document. Recall that the time of last processing was
set 2523 after it completed.

If:

1. the preceding processing 2523 did not succeed 2525 for all
Fragment Identifiers;

2. a) the DOM has not been 2530 stable for more than the
configured failure stability period (the period used to
declare processing to be unsuccessful), or
b) the selection (provided the user’s preference is to display

Fragment Identifiers using selections) has not been 2530
stable for more than the configured failure stability
period; and

3. a) the overall time limit for this document has not expired
2535, and
b) the document’s ready state was 2535 not ‘complete’

(when saved 2508 previously);

10

15

20

25

30

35

40

45

50

55

60

65

100

then set 2540 the Fragment Identifier timer for this document
to fire at the earliest time when the page can have been stable
for more than the configured time for failure stability, or when
the overall time limit will have expired. However, the timer is
set forward as needed to delay such processing until one half
second after the last Fragment Identifier processing. Recall
that the time of last processing was set 2523 after it com-
pleted.

If:

1. the preceding processing 2523 did not succeed 2525 for all

Fragment Identifiers; and
2. a) the DOM and selection (provided the user’s preference

is to display Fragment Identifiers using selections) have

been 2530 stable for more than the configured failure sta-
bility period (for unsuccessful processing),

b) the configured overall time limit for this document has

expired 2535, or

c) the ready state of the document was 2535 ‘complete’

(when saved 2508 previously);

then begin 2545 the recovery process 4700 (or in an alterna-
tive embodiment 4800) for this document’s full set of Frag-
ment Identifiers according to FIG. 47 (resp. FIG. 48). Then
check 2548 temporary storage to determine if this activation
was launched from a URI recovery document and if so, pro-
vide recovery feedback to the URI Service according to the
process 4900 of FIG. 49.

Most document types are less complex than HTML with
respect to being complete; however, HTML is not the only
document type that can produce a display prior to the avail-
ability of all content. If a document type were to be created for
which determination of the “complete” state is difficult to
define or ascertain, then the other two criteria would be used
and the “complete” criterion would be ignored for that docu-
ment type.

Update 2568 the distributed navigation history for this
user’s role. This is done in some embodiments by obtaining
the Destination of the Activation Record identifier associated
with the display context (HTML “window” object in this
example) that was previously stored 2208. This Destination is
the identifier of the Content Record for the URI of this display
context. (With less efficiency the Content Record may be
looked up based on the URI.) Using that identifier, the Con-
tent Record is retrieved from the local navigation history and
the title and description of that retrieved record are compared
with the title and description of the document of this display
context. If they are different, then the title and description
strings are updated locally and if the URI of the Content
Record is not a version 1 Fragment URI, then notity the URI
Service of the changes. (Recall thata version 1 Fragment URI
has a full Common DOM Form stored at the service, which
includes its original title and description. A version 1 Frag-
ment URI is a more complete snapshot in time.)

Ifthe Content Record corresponds to a Fragment URI, any
snippet strings of the Fragment Content Record were not
obtained from located DOM ranges (a Boolean indicates
whether this is the case in the Fragment Content Record), and
the full complement of ranges were found for this Fragment
URI, then convert the ranges to snippets according to the
process 5100 of FIG. 51. Then set the Fragment Content
Record snippets to the created snippets and set the Boolean
indicating that snippet strings were created from located
ranges to true. Synchronize changes to the snippet strings
with the URI Service.

If the URI Service is also a search engine, then document
indexing beneficially utilizes regular and accurate user agent
access to document content; information useful for maintain-
ing the search index is exchanged 2568 with the search engine

US 9,356,574 B2

101

(which is also the URI Service). This information includes
whether the document access constituted a missing indexed
information event (MIIE), which occurs when a Fragment
URI is accessed from a search engine results document (i.e.,
the Previous attribute of the Activation Record for this acti-
vation identifies a Search Content Record) and at least one
range ofthe Fragment URI could notbe found (i.e., a recovery
process was launched 2545 for this access). This indexing
support is performed according to the process 5200 of F1IG. 52
and occurs here in some embodiments in conjunction with
updating and synchronizing 2568 the navigation history.

Processing of Fragment Identifiers for this document ends
by unregistering 2570 event notifications for this document.

FIG. 26 illustrates the process 2600 of moditying the dis-
play of adocument based on Fragment Identifiers. The idea is
to produce arange or a set of ranges that are processed into the
DOM in accordance with the user’s preferences for selec-
tions, highlighting, and scrolling. First, all Fragment Identi-
fiers are decoded and processed against a document’s DOM
to produce ranges. The inputs 2605 are an ordered set of one
or more Fragment Identifiers, a document with its DOM, and
the user’s Fragment Identifier display preferences. Note that
documents can change many times and can even change
periodically, so this process may be invoked multiple times
for any particular document. It is common for document
scripts to make a multitude of changes during the first
moments of the creation of a document, and many possible
sources of delay can cause such changes to occur later at
unintended times.

Select each Fragment Identifier in the ordered set and pro-
cess it in order 2610,2615. The actions in the loop now
described apply to this selected Fragment Identifier, to the
exclusion of any other Fragment Identifiers. First, parse the
start of the Fragment Identifier 2620 to determine its version
number. If the version number is not 1 2615 and not 2 2635,
then the Fragment Identifier is ignored and the loop begins
again for another Fragment Identifier 2610.

If'the Fragment Identifier is version 1 2615 (resp. version 2
2635) then decoded it in accordance with the encoding used
for version 1 2620 (resp. version 2 2640) Fragment Identifi-
ers. If the decoding fails for version 1 2625 (resp. version 2
2645) Fragment Identifiers, then reject the Fragment Identi-
fier and begin the loop again 2610, for any additional Frag-
ment Identifier. Note that such failures should not occur, since
Fragment Identifiers are not saved for a document unless they
have already been parsed successfully, but ensuring that noth-
ing has gone wrong with the saved set before modifying the
document is prudent and allows graceful recovery from unex-
pected circumstances.

If the decoding succeeded for the version 1 2625 (resp.
version 2 2645) Fragment Identifier, then process the version
12630 (resp. version 2 2650) Fragment Identifier against the
DOM to produce one or more ranges. Details of this process
2700 for version 1 Fragment Identifiers are illustrated in FIG.
27. Details of this process 2800 for version 2 Fragment Iden-
tifiers are illustrated in FI1G. 28.

Add 2670 the range or ranges produced (2625, 2645),
including any ranges from inexact matches, to the accumu-
lated set of DOM ranges for the set of Fragment Identifiers, in
order. If more than one match was produced from a single
Fragment Identifier, then the earliest match in the page comes
first, the second comes second, and so on. These accumulated
ranges are associated with the Fragment Identifiers that pro-
duced them, which in turn are associated with the quality of
the match produced. The quality of the match produced can be
the following:

20

25

30

40

45

50

55

102

1. Exact, meaning that the target hash matched exactly in one
or more places of the Canonical Form for a version 2
Fragment Identifier, and for a version 1 Fragment Identifier
there was one or more in-order sequential matches for the
prefix, target, and suffix Canonical Forms.

2. Inexact, this level only occurs for version 1 Fragment
Identifiers, meaning that the canonical prefix, target, and
suffix hashes were sufficient to find a match, including an
exact match for the target only, but that not all three
matched perfectly in order and position.

3. Partitioned inexact, meaning that the partitioned hash was
used to find an approximate match.

Ifthere are no more unprocessed Fragment Identifiers 2610
and if no ranges were produced 2673 then return 2680 failure
for this process.

Ifthere are no more unprocessed Fragment Identifiers 2610
and if ranges were produced 2673, use 2675 the accumulated
ordered set of DOM ranges to modify the selections, the
DOM, or both in accordance with the capabilities of the user
agent and user preferences. This is done according to the
process 2900 of FIG. 29. Return 2678 the set of Fragment
Identifiers with their match status as well as the scroll posi-
tions of relevant scrollable elements of the display. If the
range that is displayed by scrolling is displayed within more
than one scrollable element, then its display involves a scroll
position from more than one element. For example, a division
of'a document may itself be scrolled into view, but the range
could be within that division, and so the range is beneficially
scrolled into view within that division. The value returned
here contains as many scrolling positions as are required to
achieve the desired display of the range. These scroll posi-
tions are needed in order to later determine whether docu-
ment-associated scripts have changed the positioning of dis-
play elements, after they have been set according to these
specifications. This allows the scroll position to be re-set
according to these specifications, as needed.

FIG. 27 illustrates the process 2700 of producing a DOM
range from a single-range version 1 Fragment Identifier. The
inputs 2705 to this process are the Fragment Identifier range
and a DOM instance. From the DOM instance, a node array
and Canonical Form of the document are created 2710. This
is conditioned on the input range Boolean to determine
whether or not to treat Vn'T nodes that have non-trivial alter-
native text as Alt nodes. E.g., HTML image nodes having
non-trivial text in ‘alt’ attributes are treated as Alt nodes in
accordance with this Boolean. This is necessarily the same
Canonical Form used for creating Fragment Identifiers as
described previously in the process 1200 of FIG. 12. Based
upon the decoded version 1 fragment range, a range of the
DOM is identified 2715 if possible. Since the document may
have changed in arbitrary ways since the Fragment Identifier
was created, it may not be possible to find a range, but ranges
may be found even if they are not perfect or exact matches.
Details are given in the process 3000 of FIG. 30. If a range is
produced, along with its quality of match of Exact, Inexact, or
Partitioned Inexact, it is returned 2720. If no range is pro-
duced, then failure is returned.

FIG. 28 illustrates the process 2800 of producing a DOM
range or ordered set of DOM ranges from a single-range
version 2 Fragment Identifier. The inputs 2805 to this process
are the Fragment Identifier range and a DOM instance. Based
on the DOM instance and the Booleans from the fragment
range for image text inclusion, one or two node arrays and
matching Canonical Forms of the document are created 2810.
The first node array only includes text from text nodes; the
second, if created, includes text from text nodes as well as text
from VnT nodes (image nodes in the HTML example asso-

US 9,356,574 B2

103

ciated with some embodiments) that contain alternative text.
Only one node array is created if exactly one of the two
Booleans is set. [f the two Booleans indicate that image text is
included, then images having non-trivial alternative text rep-
resentations are treated as text nodes. If the two Booleans
indicate that image text is not included, then all images are
treated as VnT nodes. If the two Booleans indicate that it is
unknown whether image text is represented (which is the
typical case if the version 2 Fragment Identifier was con-
structed at the user agent from snippets), then both Canonical
Forms and mappings are created. These are the same Canoni-
cal Forms used for creating Fragment Identifiers as described
previously for the process 1200 of FIG. 12. Based upon the
decoded version 2 fragment range, one or more ranges of the
DOM are identified 2815 if possible. Since the document may
have changed in arbitrary ways since the Fragment Identifier
was created, it may not be possible to find a range, but ranges
may be found even if they are not perfect or exact matches. It
may also be possible to find multiple exact matches, which
results in multiple ranges up to a configurable limit. By
default this limit is 5. Details relating to searching based on a
version 2 Fragment Identifier are given in the process 3400 of
FIG. 34.

If ranges were produced from two Canonical Forms, com-
pare 2820 the match quality of the produced ranges. Retain
the range or range set having the best quality. If there is a tie
in quality, then preferentially retain the results from the
Canonical Form that did not use image text and discard the
other match or match set.

Return 2825 any ranges that are produced, along with the
quality of match designation of Exact or Partitioned Inexact.
(The quality designation “Inexact” is not used in some
embodiments with version 2 Fragment Identifiers.) If no
range is produced, then return failure.

FIG. 29 illustrates the process 2900 of displaying the
ranges by altering the DOM and selection. The input 2905 is
an ordered set of ranges for a DOM and a DOM instance. If
the user prefers 2910 highlighting when displaying Fragment
Identifiers over selections then the DOM is simply modified
2915 so that each range in the set is highlighted. If the user
prefers 2910 selections, there are 2920 multiple ranges to
display, and the user agent (typically a browser) is able to
display 2925 multiple ranges in a single selection, then create
2930 a multi-range selection against the DOM instance that
has all of the ranges and scroll 2935 to the range represented
first in the ordered set. Return 2965 the precise scroll posi-
tions against the DOM.

Note that if the range that was scrolled into view is dis-
played within more than one scrollable element, then its
display involves a scroll position from more than one ele-
ment. For example, a scrollable division of a document may
itself be scrolled into view, but the range could be within that
division, and so it should be scrolled into view within that
division. The value returned here contains as many scrolling
positions as required to achieve the desired display of the
range. These scroll positions are needed in order to later
determine whether document-associated scripts have
changed the positioning of display elements that were set
according to these specifications. This allows the scroll posi-
tion to be re-set according to these specifications, as needed.

It the user agent cannot 2925 display multiple range selec-
tions, then create 2940 a selection for just the first range in the
ordered set, scroll 2945 to the selected range, and modify
2950 the DOM to highlight all of the ranges, including the
selected range. Return 2965 the precise scroll positions
against the DOM.

10

15

20

25

30

35

40

45

50

55

60

65

104

If there are not 2920 multiple ranges, create a single range
selection for the range, display 2955 it against the DOM and
scroll 2960 it into view. Return 2965 the precise scroll posi-
tions against the DOM.

FIG. 30 illustrates the process 3000 of performing a ver-
sion 1 Fragment Identifier range search for a single range
against a DOM instance. Perform 3005 three n-gram hash
searches across the Canonical Form, one for each of the prefix
hash, the suffix hash, and the target hash, and set n to the
length of the prefix, the suffix, and the target in UTF-16
(Unicode) 16-bit code units respectively. An array of matches
for each search holds the positions, in the Canonical Form, of
the matches. Matches occur when the high order HashWidth
of bits of the prefix, suffix, and target computed hashes
respectively are the same as those from the Fragment Identi-
fier. These n-gram searches are performed according to pro-
cess 200, for which the inputs are the Canonical Form, the
hash value to be found, the length of the hash (n), and the
number of high order hash bits used (HashWidth). Recall that
the value of HashWidth is encoded in each range of a Frag-
ment Identifier. The returned values of interest here are the
array of matches and the count of matches for each of the
three searches.

Using these three arrays we first identify 3010 any perfect
matches. A perfect match means the prefix matches, followed
immediately by a match of the target, and that followed
immediately by a match of the suffix; i.e., there is no overlap
and no gaps. If there are 3015 one or more perfect matches,
then score 3020 each match based on the three “closer to
front” Boolean values from the fragment range. Each of the
three is worth one point, and the perfect match with a com-
ponent that corresponds most closely to the placement indi-
cated by the Boolean when compared with the other perfect
matches gets the point. The perfect match with highest score
is taken. I[fthere is more than one highest score then the match
having the high score that appears first in the document is
used 3085 and processed into a DOM range according to the
process 2900 of FIG. 29.

If there is 3015 no perfect match, but there is at least one
target match 3025 that lies between a prefix match and a suftix
match, then score 3045 each such “between” target match on
the basis of the closeness of such surrounding matches; i.e.,
pick the target match that is closest in aggregate to the end of
the prefix match and the beginning of the suffix match. If there
is a tie, then score the tied matches according to the “closer to
front” Booleans as described above for perfect matches. If
there is still more than one tie remaining then pick the one that
appears first in the document. Process 3085 the resulting
match into a DOM range.

If there is no 3025 target match that falls between a prefix
match and suffix match, but the target length is 3030 greater
than a configured minimum number of code units (the default
for some embodiments is 10) and there is 3040 at least one
target match somewhere in the Canonical Form; then if there
is 3035 a target match that either follows a prefix match or
precedes a suffix match, then pick 3080 the target match that
is nearest its preceding prefix match or its following suffix
match (provided they exist) from amongst such target
matches. If there is more than one with the same proximity,
then evaluate those on the basis of the Boolean “target is
closer to front” as follows: if the Boolean is true, then pick the
remaining match that appears first in the document; otherwise
pick the one that appears last. Process 3085 the resulting
match into a DOM range.

Note that the configured minimum target length in code
units is used to ensure that there is a reasonable probability
that the ultimate selected content was intended content. In this

US 9,356,574 B2

105

case the match is not perfect (not a perfect prefix-target-suffix
match). Thus, we are only willing to accept a target match that
is out by itself under circumstances that increase the prob-
ability of identifying intended content. For example, the hash
of'a single character could match in many places, and without
the matching context is likely to be a randomly occurring
match. In alternative embodiments the criterion could be that
the target hash matches in no more than a configured number
of places in the document; and if there are more then the
additional matches are not used.
If there are no target matches 3035 that follow a prefix
match or precede a suffix match, but there is 3070 at least one
target match, then pick 3075 the match that appears earliest in
the document if the Boolean “target closer to front” is true,
and pick the one that appears last otherwise. Process 3085 the
resulting match into a DOM range.
It no target matches 3070, then report 3065 failure to match
in the DOM for this fragment range.
If no target matches 3040, then use 3050 the secondary
search elements of the Fragment Identifier range to find target
matches. This is done according to the process 3100 of FIG.
31. If the secondary search found 3060 a match, then process
3085 the match into a DOM range.
If the secondary search did not find 3060 a match, then
report 3065 failure to match in the DOM for this fragment
range.
When a target match has been identified, there is a Boolean
indicating whether it is a perfect match, a Boolean indicating
whether the secondary search information was used, the posi-
tion of the target match and its length, the position (if any) of
the prefix match and its length, and the position (if any) of the
suffix match and its length. When the secondary search infor-
mation was used for an approximate match, then the length of
the match may not be the same as the target length in code
units, so the length of the match is beneficially kept separately
even though it is redundant when the target matched. For
uniformity, even though the length may be obtained for the
prefix and suffix matches from the decoded Fragment Iden-
tifier, we consider the intermediate result here to include the
lengths. The two Booleans establish the quality of the match,
whether it is exact, inexact, or inexact using secondary crite-
ria.
The target or approximate match information is further
processed 3085 into a DOM range. This is done according to
the process 3500 of FIG. 35. The resulting DOM range is
reported 3090 along with the Booleans that together indicate
the quality of the match.
FIG. 31 illustrates the process 3100 of creating target
matches from secondary search elements. The inputs of this
process are the Fragment Identifier (either version 1 or ver-
sion 2), and the Canonical Form. The Fragment Identifier
elements actually used are taken from the fragment’s range,
and are:
The length in code units (L). This is the length of the
Canonical Target.

The length in code units of all but possibly the last segment
in the partitioned Canonical Target (n,).

The width in bits of the individual hashes for the segments
(m).

The bit array containing the sequence of partitioned-hash

values of the Canonical Target.

The number s of n, -length segments in the Canonical Tar-
get is calculated by integer division (i.e., drop the remainder)
as s=L/n,. If there is a non-zero remainder to L/n,, then there
is an additional segment of length [.—(n, *s), which is desig-
nated n,.

10

20

25

40

45

60

106

A simultaneous n-gram rolling hash search 3105 for the s
hash values is made across the Canonical Form, where the
length in 16 bit code units (n) of the n-gram hash is n, and the
hash values are in the s-length array of m-bit hash values from
the bit array. This simultaneous search is closely related to
process 200, using the same randomly chosen hash function,
and is described in detail as the process 3200 of FIG. 32. It
produces an array containing starting positions in the Canoni-
cal Form of strings having length n, that match, for each of the
s hash values. If n, is not zero, then an additional n-gram
search is performed across the Canonical Form where n is n,,
to obtain a single array containing starting positions of strings
having length n, that match for the final segment.

From each resulting array of match positions, the length of
the matched text in code units, and the Canonical Form, a set
of unique code unit sequences that the particular hash
matches is constructed 3110. Note that these sequences are in
code units and not necessarily characters, since a matched
string can start or stop within a character that is longer than a
single code unit. If no code unit sequence in the Canonical
Form was matched for a particular segment, then the match-
ing set is populated with a single string, having the same
length as the segment, using a code unit length character that
appears nowhere in the Canonical Form. In some embodi-
ments the standard space character is used, which is always
adequate since it cannot appear in a Canonical Form. How-
ever, since upper case roman characters likewise do not
appear and they are all 16 bit characters, any of them would
suffice in alternative embodiments.

In what follows regular expressions are used, and in those
regular expressions code units are treated as complete char-
acters, so a Unicode character that requires two code units is
treated as a two-character sequence for purposes of process-
ing regular expressions.

Construct 3115 a regular expression of code units that
recognizes precisely each code unit sequence in the set of
matching code-unit sequences, without repetition. For
example, if the first m hash bits in the bit array matched the m
high-order bits of the hashes of “abc” and “def”, and the
sequences “abc” and “def” appear in the Canonical Form,
then the set of code unit sequences {“abc”,“def”} would be in
the result of the previous step for the first segment. This step
transforms this set into the regular expression (abcldet).

A regular expression is formed 3120 by concatenating the
regular expressions from the previous step in the segment
order. For example, if the first segment results in the regular
expression (abcldef) and the second segment results in the
regular expression (zed|pudlhel), then the constructed regular
expression from this step begins (abcldef)(zedIpudlhel); it is
followed by the remaining constructed regular expressions
from the previous step, in sequence. This resulting regular
expression is called an approximate match regular expres-
sion; this regular expression is interpreted in meaning accord-
ing to well known rules from the prior art.

Find 3125 the minimum edit-distance (Levenshtein dis-
tance) code unit subsequence of the Canonical Form to the
approximate match regular expression. If there is more than
one with the same minimum edit-distance, then choose the
shortest one. If there is still more than one best match, then
choose the one that comes first in the Canonical Form. The
shortest string that achieves a best match is chosen over
longer strings because this tends to eliminate extraneous text.
For example, if the latter half of the target string were
removed from the document (and this were the only change),
and for simplicity we assume that none of the hashes from the
second half of the intended target match anywhere in the
resulting Canonical Form and no code unit from the second

US 9,356,574 B2

107

half of the target appears anywhere else in the Canonical
Form, then the same Levenshtein distance would be observed
for a number of strings that start with the remaining halfofthe
intended target. However, the shortest of them would contain
all of the intended matching content that was not removed
from the document.

It the Levenshtein distance to the nearest substring is 3130
less than a configurable proportion of the length of the
Canonical Target in code units, then its position and length are
returned 3145 as a match. The default configurable propor-
tion is 40% in some embodiments.

If the best Levenshtein match required 3130 more than the
configured proportion of the target length in edits, then per-
form 3135 a direct n-gram based search for partially matching
content according to the process 3300 of FIG. 33.

Those skilled in the art will appreciate that there are many
metrics and means for approximate or fuzzy matching of
sequences that could be used to find approximate string
matches. For example, just within the family of approximate
matches based on Levenshtein distance, there are an
unbounded number of ways to weight the different kinds of
edits, each producing a different metric for nearness. Inser-
tions of missing characters could be weighted as a higher cost
than deletions, which in turn could be weighted differently
than replacement operations. Furthermore, transposing adja-
cent characters is a common typographical error, and some
distance measures use this type of edit along with the other
edits in the standard Levenshtein distance. Here equal
weighting is used, in some embodiments, but slight or large
adjustments can be made to find approximate matches with-
out departing from the teachings herein. In addition, the use of
other string distance measures (that are not directly related to
Levenshtein distance) is also possible. When the Levenshtein
measure fails to find a suitable match as described above, we
seek matches in accordance with another aspect of some
embodiments described for the process 3300 of FIG. 33.

If the direct n-gram based search resulted 3140 in a match
or set of matches, then return 3145 the matches along with
their lengths.

If the direct n-gram based search did not result 3140 in a
match or set of matches, then return 3150 failure to find an
approximate match.

FIG. 32 illustrates the process 3200 of simultaneously
searching for a set of segment n-gram hashes. This is func-
tionally equivalent to running the single-hash value search
process 200 repeatedly for each segment’s n-gram hash,
except that there is no substring and no calculation of the
required number of bits, and it is done in one pass (typically
over the Canonical Form of a document in some embodi-
ments) for a whole set of hashes whose matches are to be
found. If an n-gram search needs to be done for matches to a
set of segment hash values, where the size of the n-gram (i.e.,
the length of the segments in code units) is the same for each
member of the set, then the search may advantageously be
performed simultaneously. The inputs 3205 include an array
of 16 bit code units (the input string, typically a Canonical
Form), to be searched for matches; the length (n) of each
n-gram (length of the segments); the value array <DistHash>
containing the computed hash values for each segment, with
the first segment at index O in the array; the number of ele-
ments (segments)<DistHashCount> in the array; and the
number <bitCount> of high order bits of each hash that are
used.

Initialize 3210 some variables. Let <bitMask> be a mask
that retains only the high order <bitCount> bits of a hash
value is used by a bitwise ‘and’ operation (AND). Let <count-
Matches> (the count of matches found for the corresponding

15

20

40

45

108

hash value) be an array of size <DistHashCount>, and initial-
ize each of its values to 0. Let <arrayMatches> be an array of
size <DistHashCount>, each element of which is an initially-
empty array of indexes into the input string. Array elements of
this two dimensional array indicate where the hash value from
the <DistHash> array matches in the input string. In sum-
mary, for an index i in the range [0,<DistHashCount>],
<arrayMatches>[i] is an array of indexes into the input string
where the hash value <DistHash>[i] matches, and the size of
the array <arrayMatches>[i] is <countMatches>[i]; initially
<countMatches>[i] is zero.

Let the first n code units of the input string be the current
n-gram. Calculate 3215 the hash value over the current
n-gram and let <curNgHash> represent that value. Let
<indexNGram> represent the index of the first code unit of
the current n-gram in the input string; initially it is zero.

Let <idx>be an integer index initialized 3220 to zero. It is
anindex into the hash values to be checked. Compare the hash
of an input string n-gram against each segment’s hash value.
Since by default the number of hash values to check is 16 or
less, and walking through a 16 element array is fast (it will
almost always be entirely in the [.1 cache, for modern pro-
cessors), the preferred manner of checking is to compare each
one sequentially. Nevertheless, those skilled in the art will
appreciate that there are many ways to search for such
matches. For example, 16 is sufficiently large that on some
processors a small hash table holding the 16 entries may
provide a more efficient search mechanism, especially given
that there is no need to calculate hash bits (the values are
themselves high quality hashes, so any subset of their bits
constitute well distributed hash values).

Let 3225 <cdh> be an integer whose standard binary rep-
resentation is obtained by the bitwise ‘exclusive or’ (XOR) of
<DistHash> at index idx with <curNgHash>, masked by a
bitwise ‘and’ operation (AND) with <bitMask>. In other
words:

<cdh>=(<DistHash>[idx] XOR <curNgHash>) AND

<bitMask>
This masking calculation isolates the high order bits of the
hash, which are the only bits kept in the result, so that the
hashes of the segments and the n-gram hashes will appropri-
ately match.

Ifthe value of <cdh>is 3230 zero, then set <arrayMatches>
[<idx][<countMatches>[<idx>]] to the value of <indexN-
Gram> and increment <countMatches>[<idx>]. This stores
the current position as a match for the hash value <DistHash>
[idx], and increments its match count, <countMatches>
[<idx>]. Then increment 3240 <idx>.

Ifthe value of <cdh>is 3230 not zero, then increment 3240
<idx>.

If the value of <idx> is 3245 less than <DistHashCount>,
then repeat this loop starting with the hash comparison 3225.

If there is 3250 more of the document left beyond the
current n-gram, then the rolling hash function value <curNg-
Hash> is updated 3255 to the hash of the next n-gram, which
is the n-gram to the right in the document by one 16 bit code
unit (one code unit is added to the end, and one removed from
the beginning), and then the loop 3220 begins again. The
calculation of the rolling hash function was previously
described.

Ifthere are 3250 no more input string code units to process,
then return 3265 the two dimensional array <arrayMatches>
and its corresponding lengths (number of matches for each
segment) in the <countMatches> array.

FIG. 33 illustrates the process 3300 of finding a partial or
imperfect match based directly on a set of matches for each
segment hash, represented in an array of matches for each

US 9,356,574 B2

109

segment. These arrays contain data about matches and have

already been computed using (in some embodiments) rolling

n-gram hash matching techniques. Inputs 3305 are:

<arrayMatches>, a two dimensional array of n-gram hash
matches. Each entry gives the position of a hash match in
the Canonical Form.

<DistHashCount>, the count of hashes (which is the same as
the count of segments) whose matches are represented in
the array.

<length>, the total length of the Canonical Target in code
units.

<n>, the size of the n-grams in code units. The last one may be
shorter; its length is calculated from <length> and <n>, its
size is <n-last>.

<hashBits>, the number of bits used from each hash.

The variable <ThresholdProbability> is 3310 the config-
ured probability required to infer an isolated partial match.
The idea of partial matches is that the n-gram hashes can be
used to find substrings of the Canonical Form that are shorter
than the full Canonical Target, but which with high probabil-
ity match within the Canonical Target even though the entire
Canonical Target does not match in the Canonical Form.
Typically a single segment match will not meet the threshold.
For example, if 16 bits is used for each segment, then the hash
will match, at random, one in 64K positions. A document of
size one megabyte is expected to match a 16 bit hash in about
16 positions, even if the content is unrelated. Thus, the prob-
ability that a single Canonical Form n-gram consists of the
same sequence of n code units as was used to compute the
segment hash value when they have the same 16 bit hash
values is small. The question is: what is the number, <min-
Seg>, of segment matches required, in order and without
gaps, to meet the <ThreasholdProbability>?

For computational reasons having to do with rounding
errors, we use (1-<ThresholdProbability>) internally as the
probability of failure, and define the probability of failure as
the probability of matching a random sequence of segment
length strings using segment hashes (in order and without
gaps). This probability is calculated as the size of the Canoni-
cal Form “L” in code units multiplied by the total number of
segments <DistHashCount>; the resulting product is divided
by two taken to the power of the total number of bits in the
hashes of the matches. Thus, calculate <minSeg> as the
smallest whole number that satisfies the following equation.

(<DistHashCount>*L)<=(1-<ThresholdProbability>)
(2"(<minSeg><hashBits>))

[

In this equation, the binary operator means that the
operand on the left (i.e., 2 here) is taken to the power (expo-
nent) of the operand on the right. This is preferably calculated
by repetition using consecutive whole numbers for <min-
Seg>, starting with 1, until the equation is true, at which point
<minSeg> is known 3315. The default configurable value for
(1-<ThresholdProbability>) is the inverse of (2°37), or about
1in about 137 billion. For example, if the number of segments
is 16, the number of bits in a hash as 16, and the Canonical
Form has one million code units, then the number of consecu-
tive segments required to match is 4. With 4 the probability of
a spurious match is less than 1 in 137 billion, but with 3 the
probability of a spurious match somewhere in a mega code
unit size document is about one in 17 million, which means
that about one in 17 million documents of that size would
have a spurious match of three consecutive segments some-
where in the document. By default this is considered to be too
high of a probability of a spurious match to infer success.

Since the default configurable setting usually results in 16
segments, this means that a minimum of about 25% of the

10

15

20

25

30

35

40

45

50

55

60

65

110

Canonical Target must match somewhere in the Canonical
Form for this standard to be met. Substrings longer than 25%
of'the Canonical Target may be found in the Canonical Form
without resulting in 4 contiguous matches. A discussion of
this issue was presented in conjunction with the details for
FIG. 10. Using the default settings for sufficiently long
Canonical Targets, a contiguous match of ¥4 of a Canonical
Target ensures that this embodiment will positively identify
the match based on the “at least 4 contiguous matching seg-
ments” criterion.

This difference between the minimum contiguous propor-
tion of a Canonical Target that is required to match at all, and
the minimum proportion required to ensure that a match
meeting the criterion will be detected, can be reduced by
increasing the number of segments. To keep the size of a
Fragment Identifier the same would require a simultaneous
proportional lowering of the number of bits in each segment;
however, this increases the computational cost by greatly
increasing the number of single segment matches. Moreover,
creating a Fragment Identifier that has large numbers of single
segment matches can be appropriate if the available compu-
tational resources of the recipient machine are sufficient, but
the capabilities of a recipient machine are generally not
known in advance. Thus, by default, 16 hash bits are used for
each segment in order to keep the computational costs down.
Simply increasing the number of segments, without decreas-
ing the number of bits in each segment hash, allows positive
identification of smaller pieces of a Canonical Target mainly
at the cost of increasing the size of Fragment Identifiers; the
computational cost increases are modest.

From the array of matches, find 3320 all contiguous
matches (without gaps or overlaps and in segment order) that
are <minSeg> in length or longer. Each segment match is part
of a maximal contiguous match that contains it, but most
random maximal contiguous matches will be of length 1. The
qualified maximal contiguous matches are of length <min-
Seg>or longer. Initialize 3325 the set of expanded matches to
be the set of qualified maximal contiguous matches.

If the set of expanded matches is 3330 empty, then return
3335 failure to match.

If the set of expanded matches is not 3330 empty, then for
each expanded match, create 3340 a set of trial expansions by
effectively extending the match in one or both directions. If a
subsequent (resp. previous) match, including other expanded
matches and having any number of segments, is in segment
order (i.e., the order of the hashes in the Fragment Identifier
range matches the order of the corresponding matching sub-
strings in the Canonical Form) and follows the rightmost
segment match (resp. precedes the leftmost segment match),
then it becomes a trial expansion of the expanded match. Note
that a part of an existing multi-segment match can be used, by
removing portions of the match that overlap the expanded
match. Such removals are extended into the match so that the
resultant trial expansion begins and ends with individual seg-
ment hash matches (the first and last code units are part of a
match with a segment). Each such trial expanded match has
an associated value called its match ratio, which is a measure
of the quality of the trial expansion based on the eventual
number of segments that match in the expansion as well as the
added non-matching text. It is calculated as the number of
code units in the gap between two matches (after any
removal), divided by the total length in code units of the
segment matches within the resulting trial expansion. The
size of the gap is increased before computing the match ratio
until it is at least halfthe sum of the lengths, in code units, of

US 9,356,574 B2

111

any missing segments, whose matches would be expected
between the expanded match and the match it is joined with in
the trial expansion.

For example, if segments 2, 3, 4, and 5 match in one
expanded match string A, and 5, 6, and 7 match in another
expanded match string B that follows A, then the 5 match is
dropped from B creating a 6 and 7 match, and a trial expanded
match is constructed from A and the reduced B match. The
result matches segments 2, 3, 4, 5, 6, and 7; the value of the
ratio is the number of non-matching code units between the 4
and 5 match positions divided by the sum of the size of the
segments 2, 3, 4, 5, 6, and 7 in code units. Because there are
no additional matches expected between 4 and 5, there is no
adjustment of the gap value before calculating the ratio. If A
had segments 1, 2, 3, and 4, and B had 6 and 7, then the gap
size for the trial expansion calculation would be adjusted up if
it were less than half the size of a segment, since 5 (one
segment) is missing.

Replace 3345 each expanded match with its trial expansion
(if there are any) that has the lowest match ratio, provided the
lowest match ratio is less than a configured maximum. The
default maximum is 0.25. Le., if the gap is less than 25% of
the sum of the length of the individual matches in the trial
expansion, then the trial expansion becomes an expanded
match and replaces the expanded match from which it was
constructed.

If any changes were made 3350 in the set of expanded
matches by these expansion rules, then begin again 3340
creating trial expanded matches for each expanded match in
the set.

If no changes were made 3350 in the set of expanded
matches by these expansion rules, then combine any overlap-
ping expanded matches into single expanded matches.

The expanded match that matches the largest number of
segments is reported 3360 as a match. If there is more than
one that contains the largest number of matching segments,
then report the one that is shortest from end to end. If there is
still more than one, then the one that appears first in the
Canonical Form is reported as a match.

In alternative embodiments the partial match provisions
are entirely removed, and dealing with imperfect matches is
equivalent to dealing with entirely missing content, which
falls entirely on the URI Service. In other embodiments the
use of secondary search criteria is configurable, and when not
so configured, Fragment URIs are created without them.

FIG. 34 illustrates the process 3400 of performing a ver-
sion 2 Fragment Identifier range search. This is simpler than
the version 1 range search since version 2 Fragment Identifi-
ers have no context (no prefix or suffix). In addition, in some
embodiments, the URI Service does not explicitly keep the
content of version 2 Fragment Identifiers, so the recovery
process is also simpler. The inputs are a Canonical Form
(which is possibly an Alternative Canonical Form) and the
version 2 range from the Fragment Identifier. The target hash
and its length are used 3405 to perform an n-gram search
across the entire Canonical Form, according to the process
200 of FIG. 2, for which the inputs are the Canonical Form,
the hash value to be searched, the length of the hash (n), and
the number of high order bits used (HashWidth). Recall that
the value of HashWidth is encoded in each range of a Frag-
ment Identifier. The returned value is an ordered set of ranges.

If there is 3410 at least one match (these are necessarily
“perfect” matches), then reduce 3435 the set of matches as
necessary by only retaining the matches appearing in the first
(configurable maximum) number of positions in order of
appearance in the Canonical Form. In some embodiments, the
configurable maximum is by default 5.

10

15

20

25

30

35

40

45

50

55

60

112

The matches are processed 3440 individually into a set of
matching DOM ranges; the details of this processing 3500 are
illustrated in FIG. 35. FIG. 35 includes processing rules for
creating ranges from more complicated matches, such as arise
from version 1 Fragment Identifiers, but its rules work for
version 2 matches as well. The rules of FIG. 35 provide for the
case where no prefix or suffix matches, which is implicitly the
case for version 2 Fragment Identifiers. While these are
simple text matches without offsets, a version 2 Fragment
Identifier could nevertheless match alternative text from an
image in an Alternative Canonical Form. This routinely
occurs since search engines often provide such alternative
text in snippets. Thus, either by matching text that spans
across an image, or by matching the alternative text of an
image, images can occur within the ranges that are created.
Recall that if any alternative text for an image node is
matched, then the entire image is within the resulting range.
Le., for images it is all or nothing. Report 3445 the resulting
DOM ranges and associate each range with a Boolean indi-
cating whether that range is an exact match and a Boolean
indicating whether secondary search criteria were used to find
it.

If there are 3410 no matches (i.e., no “perfect” matches)
and the target length is 3415 less than a configured minimum
match length (the default minimum is 10 code units in some
embodiments), then report 3430 failure for this range search.

If there are 3410 no matches (i.e., no “perfect” matches)
and the target length is 3415 equal to or greater than a con-
figured minimum match length (the default minimum is 10
code units in some embodiments), then in some embodiments
use 3420 the secondary search criteria to find an inexact or
partial match. Perform this partial match activity according to
the process 3100 of FIG. 31. If a secondary target match is
3425 created, then this single match is processed 3440 into a
set containing one DOM range, the details of which are illus-
trated in FIG. 35. Report 3445 this at most singleton set and
associate its range (if there is one) with a Boolean indicating
that an inexact match was found and a Boolean indicating that
secondary search criteria were used to find it.

If a secondary target match is 3425 was not created, then
report 3430 failure for this range search.

FIG. 35 illustrates the process 3500 of converting a
Canonical Form match into a DOM range. Inputs 3505 are:
1. A DOM instance for a document.

2. A node array for the DOM instance mapped to by the
Canonical Form.

3. A Canonical Form, or possibly an Alternative Canonical
Form.

4. A set of three possible matches and their lengths, one each
for the prefix, target, and suffix. The prefix and suffix
matches may be missing and are always missing for ver-
sion 2 Fragment Identifiers. In some embodiments there is
required to be a target match.

5. A Boolean indicating whether the match is exact. Note that
matches for version 2 Fragment Identifiers may be marked
exact even though there are no prefix or suffix matches.

6. A Boolean that is set to true if there is a target, suffix, and
prefix match and the target match is unique between the
prefix and suffix. Note that this is always false for version
2 Fragment Identifier matches because these have no prefix
or suffix to match.

7. Left and Right offset types and values. For version 2 Frag-
ment Identifiers these are always type text and have values
of -0 and 0, respectively; because of the logic for missing
prefix and suffix matches, these inputs are ignored for
version 2 Fragment Identifiers.

US 9,356,574 B2

113

If there is no 3510 prefix, target, and suffix match in the
input, and the target match is 3527 empty, then report 3529
failure to create a DOM range. If there is 3510 a prefix, target,
and suffix match, the match is not 3515 exact, and the target
match is not 3525 unique between the left and right prefixes or
it is not a configurable minimum number of code units in
length, then report 3529 failure to create a DOM instance. The
configurable minimum number of code units in length is, by
default, 3.

If there is no 3510 prefix, target, and suffix match in the
input, but the target match is not 3527 empty, then let 3530 the
left final position pair <FI._Node, FI._Position> be the node
and position of the node array code unit mapped to by the first
code unit in the Canonical Form target match, and let the right
final position pair <FR_Node, FR_Position> be the node and
position of the node array code unit mapped to by the last code
unit in the Canonical Form target match. Then create 3565 a
DOM range using the left and right final position pairs of the
node array as described in more detail below.

It there is 3510 a prefix, target, and suffix match, the match
is 3515 exact (i.e., the prefix, target, and suffix matches are in
order without gaps) and the target is 3520 the empty string,
then:

1. Let 3535 the left working position quadruple be <LLL_N-
ode, LL_Position, LR_Node, LR_Position>, where
<LL_Node, LI_Position> (resp. <LR_Node, LR_Posi-
tion>) is set to the node and code unit position mapped to
by the last (resp. first) code unit in the canonical prefix
(resp. sutfix). If the canonical prefix (resp. suffix) is empty
(0-length), then <LLI,_Node> (resp. <LR_Node>) is null
and <LL_Position> (resp. <LR_Position>) is 0, which
indicates an imaginary code unit and node immediately
before (resp. after) any content of the node array.

2. Let 3540 the right working position quadruple be <RL,_N-
ode, RL_Position, RR_Node, RR_Position>, and let its
values be identical to those of the left working position
quadruple.

If'there is 3510 a prefix, target, and suffix match; the match
is 3515 exact and the target is not 3520 the empty string; or the
match is not 3515 exact, the target match is 3525 unique
between the left and right prefixes, and it is at least a config-
urable minimum number of code units in length (which by
default is 3 in some embodiments); then:

1. Let 3545 the left working position quadruple be <LLL_N-
ode, LL_Position, LR_Node, LR_Position>; where
<LL_Node, LI_Position> (resp. <LR_Node, LR_Posi-
tion>) is set to the node and code unit position mapped to
by the last (resp. first) code unit in the canonical prefix
(resp. target). If the canonical prefix is empty (0-length),
then <LL._Node> is null and <LLL,_Position> is 0.

2. Let 3550 the right working position quadruple be <RL,_N-
ode, RL_Position, RR_Node, RR_Position>, where
<RL_Node, RI_Position> (resp. <RR_Node, RR_Posi-
tion>) is set to the node and code unit position mapped to
by the last (resp. first) code unit in the canonical target
(resp. suffix). If the canonical suffix is empty (0-length),
then <RR_Node> is null and <RR_Position> is 0.

Find 3555 the left final position pair <FL._Node, FL._Posi-
tion> from the left working position quadruple, <L.LI._Node,
LL_Position, LR_Node, LR_Position>, in the mapped node
array. This is achieved according to the process 3600 of FIG.
36.

Find 3560 the right final position pair <FR_Node, FR_Po-
sition> from the right working position quadruple, <RL_N-
ode, RI_Position, RR_Node, RR_Position>, in the mapped
node array. This is achieved according to the process 3700 of
FIG. 37.

25

40

45

50

114

If <FR_Node, FR_Position> is 3563 to the left of <FL,_N-
ode, FL_Position> in the node array, then let <FL._Node,
FL_Position> be the object to the immediate right of <FR_N-
ode, FR_Position> in the node array. The object to the imme-
diate right may be a VnT node or a code unit, depending on
circumstances. If <FR_Node> is a text node and <FR_Node,
FR_Position+1> is a code unit, then that code unit is the
object to the immediate right. If <FR_Node, FR_Position+1>
is not a code unit (i.e., there is no code unit in that position)
and <FR_Node_Next> is the node to the immediate right of
<FR_Node>, then <FR_Node_Next, 0> is the object to the
immediate right of <FR_Node, FR_Position>.

Create 3565 a DOM range using the left and right final
position pairs of the node array. This step is an adjustment to
obtain a range in a DOM instance based on the internal range
representation used in some embodiments. These rules are for
the HTML DOM model used in this example embodiment
and, depending on the DOM model, these rules may change.
Because the Common DOM Form uses the internal represen-
tation for end points and ranges, this step is not performed
when creating a range for a Common DOM Form instance.

Recall that a boundary of an HTML range identifies a gap
or space between objects (where objects are nodes or code
units), and does not identify objects themselves. Therefore
the activity of creating a DOM range converts object identi-
fiers of some embodiments to HTML DOM style range
boundaries, which are between objects.

The rules 3565 for creating an HTML DOM range proceed
as follows. If <FL._Node> is a text node (not a VnT node or an
Alt node), then let the left boundary of the range, <BL_Node,
BL_Offset>, be <FL_Node, FL_Position>. If <FL._Node> is
not atextnode (i.e., is either a VnT node or Alt node), then let
<BL_Node>be the parent node of <FI,_Node> (in the DOM)
and let <BL,_Offset> be the position of <FI,_Node> in a left
to right enumeration of the children of <BL._Node>. <BL._N-
ode, BL_Offset> is the left boundary of the range being
created in the DOM. This activity 3565 converts an object
identifier <FL._Node, FL,_Position> to an HTML DOM style
range boundary, which is <BL._Node, BL._Offset> between
objects.

If <FR_Node> is a text node (not an Alt node), then let the
right boundary of the range in the DOM, <BR_Node,
BR_Offset>, be set to <FR_Node, FR_Position+1>. If
<FR_Node>is notatext node (i.e., is either aVnT node or Alt
node), then let <BR_Node> be the parent node of <FR_N-
ode> in the DOM and let <BR_Offset> be 1 plus the position
of <FR_Node> in a left to right enumeration of
<BR_Node>’s children. <BR_Node, BR_Offset> is the right
boundary of the range being created in the DOM. Since an
HTML boundary identifies a gap or space between objects
(where objects are nodes or code units), add 1 to the position
to identify the gap following the object as the right boundary.
This activity 3565 converts an object identifier <FR_Node,
FR_Position> to an HTML DOM style range boundary
<BR_Node, BR_Offset> between objects.

Some DOM instance range boundaries have more than one
valid representation because a gap between nodes in a tree can
generally be identified relative to two or more nodes in the
node hierarchy; however, DOM instance range boundaries
are nevertheless uniquely generated in some embodiments
and, for a non-empty range, are always relative to a node that
is at least partially contained in the range. Note that by these
rules, if a match occurs partially into the alternative text of a
VnT node, then the whole of that VnT node is included in the
resulting DOM range.

FIG. 36 illustrates the process 3600 of finding the final left
position in the mapped node array (the node array mapped

US 9,356,574 B2

115

into by the Canonical Form), which is the position ofthe node
or code unit that is leftmost in the resulting range. Inputs
consist 3602 of a node array, a working position quadruple
<L._Node, L_Position, R_Node, R_Position>, and a left off-
set type and value.

If the type of the fragment range offset is not 3605 “Text’
and its value is 3610 negative, then adjust 3615 <R_node,
R_position> to the left according to the negative left offset
value, in non-text visual nodes. Do this adjustment using the
process 3800 of FIG. 38. The result of this adjustment is the
final left position in the node array and it is returned.

If the type of the fragment range offset is not 3605 “Text’
and its value is 3610 positive, then adjust 3620 <[._Node,
L_Position> to the right according to the positive left offset
value, in non-text visual nodes. Do this adjustment according
to the process 3900 of FIG. 39. The result of this adjustment
is the final left position in the node array and it is returned.

Ifthe type of the fragment range offset is 3605 “Text’ and its
value is 3625 negative, then adjust 3630 <R_node, R_posi-
tion> to the left according to the negative left offset value, in
code units. Do this adjustment according to the process 4000
of FIG. 40. The result of this adjustment is the final left
position in the node array and it is returned.

Ifthe type of the fragment range offset is 3605 “Text’ and its
value is 3625 positive, then adjust 3635 <[._Node, [._Posi-
tion> to the right according to the positive left offset value, in
code units. Do this adjustment according to the process 4100
of FIG. 41. The result of this adjustment is the final left
position in the node array and it is returned.

FIG. 37 illustrates the process 3700 of finding the final
right position in the mapped node array (the node array
mapped into by the Canonical Form), which is the position of
the node or code unit that is rightmost in the resulting range.
Inputs consist 3702 of a node array, a working position qua-
druple <I._Node, I._Position, R_Node, R_Position>, and a
left offset type and value.

If the type of the fragment range offset is not 3705 “Text’
and its value is 3710 positive, then adjust 3720 <[._Node,
L_Position> to the right according to the positive right offset
value, in non-text visual nodes. This adjustment is according
to the process 4200 of FIG. 42. The result of this adjustment
is the final right position in the node array and it is returned.

If the type of the fragment range offset is 3705 not “Text’
and its value is 3710 negative, then adjust 3715 <R_Node,
R_Position> to the left according to the negative right offset
value, in non-text visual nodes. Do this adjustment according
to the process 4300 of FIG. 43. The result of this adjustment
is the final right position in the node array and it is returned.

Ifthe type of the fragment range offset is 3705 “Text’ and its
value is 3725 positive, then adjust 3735 <[._Node, [._Posi-
tion> to the right according to the positive right offset value,
in code units. Do this adjustment according to the process
4400 of FIG. 44. The result of this adjustment is the final right
position in the node array and it is returned.

Ifthe type of the fragment range offset is 3705 “Text’ and its
value is 3725 negative, then adjust 3730 <R_Node, R_Posi-
tion> to the left according to the negative right offset value, in
code units. This adjustment is according to the process 4500
of FIG. 45. The result of this adjustment is the final right
position in the node array and it is returned.

FIG. 38 illustrates the process 3800 of adjusting the left
position relative to a mapped node array (a node array
mapped to by a Canonical Form) according to a negative left
offset value in VnT (non-text visual) nodes. This adjustment
traverses the array from the original left position to the left,
counting VnT nodes according to the offset, and ideally
arrives at a VnT node. If changes have been made to the

20

25

35

40

45

50

60

116

document since the offsets were calculated, then the traversal
may halt onanon-VnT node. The starting position s typically
the node mapped to by the leftmost code unit of the Canonical
Target but may be the leftmost code unit mapped by the
Canonical Suffix, if the Canonical Target is empty. Because
the document may have changed, the traversal halts when a
node having code units that are mapped to by the Canonical
Form is encountered. This makes sense because, if the
encountered mapped code units had been in the original docu-
ment then they would have been included in the Canonical
Target or been part of the context, and would not be traversed
in adjusting for an offset.

For example, if three images were to be traversed to the left
to establish the left boundary of a range, but the document
changed by the removal of one of those images, then it is
possible to encounter a text node to the left during the tra-
versal. If the text node encountered had been in the document
atthe time the version 1 Fragment Identifier was created, then
that node would have been part of the prefix.

Let 3805 <current_node, current_position> be the left pair
that is to be adjusted. Let <traversal_counter> equal the left
offset value. Let <next_node> be the node to the left of
<current_node> in the node array; if there is no node to the
left set <next_node> to null. Let <exit_loop> be false.

Set 3810 <exit_loop> to true if:

1. <traversal_counter> is zero or greater,
2. <next_node> is null, or
3. <next_node> is a Text node (or an Alt node interpreted as

a Text node in this instance) that is mapped to by the

Canonical Form.

Note that this procedure traverses VnT nodes, so if we
unexpectedly encounter a node having text that is mapped to
by the Canonical Form, which could be a Text node or a VnT
node that has alternative text and alternative text is being
considered, then we halt the traversal. This is unexpected, in
a sense, because this can only occur if the document has been
altered after the Fragment Identifier was made.

If <exit_loop> is not 3815 true then set 3820<current-
_node> to the value of <next_node>, increment the <travers-
al_counter> if <next_node> is not a Text node or an Alt node
interpreted as a Text node in this instance, and set <next-
_node> to the node to the left of the new <current_node> in
the node array; if there is no node to the left then set <next-
_node> to null. Restart the loop above 3810.

If <exit_loop> is 3815 true then set 3825<current_posi-
tion> to zero and return <current_node, current_position>.

FIG. 39 illustrates the process 3900 of adjusting the left
position relative to a mapped node array range according to a
positive left offset value in VnT (non-text visual) nodes. This
is similar to the procedure of F1G. 38, except that the traversal
is to the right.

Let 3905 <current_node, current_position> be the left pair
that is to be adjusted. Let <traversal_counter> equal the left
offset value. Let <next_node> be the node to the right of
<current_node> in the node array; if there is no node to the
right, set <next_node> to null. Let <exit_loop> be false.

Set 3910 <exit_loop> to true if:

1. <traversal_counter> is zero or less,

2. <next_node> is null, or

3. <current_node> contains text (is a Text node or an Alt node
interpreted as a Text node in this instance) and is mapped to
by the Canonical Form.

Note the difference with FIG. 38, in that criterion 3 here
checks <current_node >whereas in criterion 3 FIG. 38 checks
<next_node >. This difference derives from the fact that the
adjusted left end point is included in the resulting range, and
objects to its left are excluded from the range. In the case of

US 9,356,574 B2

117

FIG. 38, nodes are added to the range as the left endpoint is

moved to the left (in the negative offset direction) and in the

case described here, nodes are removed from the range as the
left endpoint is moved to the right (positive offset direction).

It <exit_loop> is not 3915 true then set 3920<current-
_node>to the value of <next_node>, decrement the <travers-
al_counter> if <next_node> is not a Text node or an Alt node
interpreted as a Text node in this instance, and set <next-
_node>to the node to the right of the new <current_node> in
the node array. Restart the loop above 3910.

It <exit_loop> is 3915 true then set 3925<current_posi-
tion> to zero and return <current_node, current_position>.

FIG. 40 illustrates the process 4000 of adjusting the left
position relative to a mapped node array according to a nega-
tive left offset value, in code units. This adjustment traverses
the array from the original left position to the left, counting
code units according to the offset, and ideally arrives at a code
unit. If changes have been made to the document since the
offsets were calculated, then the traversal may halt on a VnT
node. The starting position is typically the code unit in the
node array mapped to by the leftmost code unit of the Canoni-
cal Target, but may be the lefimost code unit mapped to by the
Canonical Suffix if the target is empty. Because the document
may have changed, the traversal halts when a code unit
mapped to from the Canonical Form is encountered. This
makes sense because, if the encountered code unit had been in
the original document then it would have been included in the
target or been part of the target’s context (prefix or suffix), and
would not be traversed in adjusting for an offset.

Let 4005 <current_node, current_position> be the left pair
that is to be adjusted. Let <traversal_counter> equal the left
offset value. Let <next_node, next_position>be the next code
unit position to the left of <current_node, current_position>
in the node array; if there is no code unit to the left then set
<next_node> to null and <next_position> to 0. Let <exit-
_loop> be false.

Set 4010 <exit_loop> to true if:

1. <traversal_counter> is zero or greater, the code unit at
<current_node, current_position> is not the second code
unit of a two-code-unit character, and <current_node, cur-
rent_position> and <next_node, next_position> are not
both whitespace,

. <next_node> is null, or

3. <next_node, next_position>is mapped to by a code unit of
the Canonical Form.

The value <next_node, next_position> is typically mapped
to by the Canonical Form if there is a code unit in the Canoni-
cal Form that came from the code unit in position <next_po-
sition> of the node <next_node>. However, in some embodi-
ments (e.g., if acronyms are expanded in constructing the
Canonical Form) a mapping from a code unit in the Canonical
Form can map to a set of code units in the node array, and the
same set may be mapped to from more than one code unit;
thus, while a code unit in the Canonical Form usually maps to
a single node array code unit, in its most general form the
check determines if <next_node, next_position> is a member
of a set mapped to by a Canonical Form code unit.

If <exit_loop> is 4015 not true, then 4020:

1. increment the <traversal_counter> if <current_node, cur-
rent_position> and <next_node, next_position> are not
both whitespace,

2. set <current_node, current_position>to the value of <next-
_node, next_position>, and

3. set <next_node, next_position> to the next code unit posi-
tion to the left of <current_node, current_position> in the
node array. [f there is none to the left then set <next_node>
to null and <next_position> to 0. Note that the next code

[\8)

10

15

20

25

30

35

40

45

50

55

60

65

118

unit position to the left of a code unit position will some-

times be in another node and there may be intervening VnT

nodes, which are skipped.

Then restart the loop above 4010.

If <exit_loop> is 4015 true, then return 4025<current-
_node, current_position>.

FIG. 41 illustrates the process 4100 of adjusting the left
position relative to a mapped node array (a node array
mapped to by a Canonical Form) according to a positive left
offset value, in code units. This is similar to FIG. 40, except
that the traversal is done to the right.

Let 4105 <current_node, current_position> be the left pair
that is to be adjusted. Let <traversal_counter> equal the left
offset value. Let <next_node, next_position>be the nextcode
unit position to the right of <current_node, current_position>
in the node array; if there is no code unit to the right then set
<next_node> to null and <next_position> to 0. Let <exit-
_loop> be false.

Set 4110 <exit_loop> to true if:

1. <traversal_counter> is zero or less and the code unit at
<current_node, current_position> is not the second code
unit of a two-code-unit character,

2. <current_node> is null, or

3. <current_node, current_position> is mapped to by the
Canonical Form.

See the description above 4010 of FIG. 40 for additional
information and rationale for this determination. Note the
difference with FIG. 40, in that criterion 3 here checks <cur-
rent_node, current_position> whereas in FIG. 40 the check is
for <next_node, next_position>. This difference derives from
the fact that the adjusted left end point is included in the
resulting range, and objects to its left are excluded from the
range. In the case of F1G. 40, code units are added to the range
as the left endpoint is moved to the left (in the negative offset
direction) and in this case, code units are removed from the
range as the left endpoint is moved the right (positive offset
direction).

If <exit_loop> is 4115 not true, then 4120:

1. decrement the <traversal_counter> if <current_node, cur-
rent_position> and <next_node, next_position> are not
both whitespace,

2. set <current_node, current_position>to the value of <next-
_node, next_position>, and

3. set <next_node, next_position> to the next code unit posi-
tion to the right of <current_node, current_position>in the
node array. If there is no code unit position to the right then
set <next_node>to null and <next_position>to 0. The next
code unit position to the right of a code unit position will
sometimes be in another node and there may be intervening
VnT nodes, which are skipped.

Then restart the loop above 4110.

If <exit_loop> is 4115 True then Return 4125<current-
_node, current_position>.

FIG. 42 illustrates the process 4200 of adjusting the right
position relative to a mapped node array (a node array
mapped to by a Canonical Form) according to a positive right
offset value, in non-text visual nodes. This adjustment
traverses the array from the original right position to the right,
counting VnT nodes according to the offset, and ideally
arrives at a VnT node. If changes have been made to the
document since the offsets were calculated, then the traversal
may halt onanon-VnT node. The starting position s typically
the node mapped to by the rightmost code unit of the Canoni-
cal Target but may be the rightmost code unit mapped by the
Canonical Prefix if the target is empty. Because the document
may have changed, the traversal halts when a node having
code units that are mapped to by the Canonical Form is

US 9,356,574 B2

119

encountered. This makes sense because, if the encountered
mapped code units were in the original document then they
would have been included in the target or been part of the
target’s context, and would not be traversed in adjusting for an
offset.

Let 4205 <current_node, current_position> be the right
pair that is to be adjusted. Let <traversal_counter> equal the
right offset value. Let <next_node> be the node to the right of
<current_node> in the node array; if there is no node to the
right, set <current_node> to null. Let <exit_loop> be false.

Set 4210 <exit_loop> to true if:

1. <traversal_counter> is zero or less,
2. <next_node> is null, or
3. <next_node> contains text mapped to by the Canonical

Form.

It <exit_loop> is not 4215 true then set 4220<current-
_node>to the value of <next_node>, decrement the <travers-
al_counter> if <next_node> is not a Text node or an Alt node
interpreted as a Text node in this instance, and set <next-
_node>to the node to the right of the new <current_node> in
the node array. Restart the loop above 4210.

If:

1. <exit_loop> is 4215 true and

2. <current_node> is 4225 null or has type VnT,

then set 4235<current_position> to 0 and return 4240<cur-
rent_node, current_position>.

If:

1. <exit_loop> is 4215 true and

2. <current_node> is not 4225 null, and

3. the type of <current_node> is not 4225 VnT,

then set 4230 <current_position> to the position of the last
code unit of the text of <current_node> and return 4240
<current_node, current_position>. Note that the position of
the last code unit of the node’s text is the length of the node’s
text minus one.

FIG. 43 illustrates the process 4300 of adjusting the right
position relative to a mapped node array (a node array
mapped to by a Canonical Form) according to a negative right
offset value, in VnT (i.e., non-text visual) nodes. This adjust-
ment traverses from the original right position to the left,
counting VnT nodes according to the offset, and ideally
arrives at a VnT node. If changes have been made to the
document since the offsets were calculated, then the traversal
may halt on anon-VnT node. The starting position is typically
the node mapped to by the leftmost code unit of the Canonical
Suffix, but if the suffix is empty then the starting position is an
imaginary node one beyond the end of the node array.
Because the document may have changed, the traversal halts
when a node having code units that are mapped to by the
Canonical Form is encountered. This makes sense because, if
the encountered mapped code units had been in the original
document then they would have been included in the target or
the target’s context, and would not be traversed in adjusting
for an offset.

Let 4305 <current_node, current_position> be the right
pair that is to be adjusted. Let <traversal_counter> equal the
right offset value. Let <next_node> be the node to the left of
<current_node> in the node array; if there is no node to the
left, set <current_node> to null. Let <exit_loop> be false.

Set 4310 <exit_loop> to true if:

1. <traversal_counter> is zero or greater,
2. <next_node> is null, or
3. <current_node> contains text mapped to by the Canonical

Form.

Note that this procedure traverses VnT nodes, so if we
unexpectedly encounter a node having text that is mapped to
by the Canonical Form, which could be a Text node or VnT

10

15

20

25

30

35

40

45

50

55

60

65

120

node if it has alternative text and is treated as a Text node for

this calculation, then we halt the traversal. For example, if

three images were to be traversed to the left to establish the
right boundary of a range, but one of those images was
removed from the document, then it is possible to encounter

a text-type node to the left during the traversal. Note that, if

the text node encountered was in the document at the time the

Fragment Identifier was created, then it would be part of the

target.

If <exit_loop> is not 4315 true then set 4320 <current-
_node> to the value of <next_node>, increment the <travers-
al_counter> if <next_node> is not a Text node or an Alt node
interpreted as a Text node in this instance, and set <next-
_node> to the node to the left of the new <current_node> in
the node array. Restart the loop above 4310. If the Canonical
Form is an Alternative Canonical Form then treat an Alt node
as a Text node during traversal.

If <exit_loop> is 4315 true then 4325 set <current_posi-
tion> to zero and then return <current_node, current_posi-
tion>.

If:

. <exit_loop> is 4315 true and

2. <current_node> is 4325 null or <current_node> has type
VT, then set 4335 <current_position>to 0 and return 4340
<current_node, current_position>.

If:

1. <exit_loop> is 4315 true and

2. <current_node> is not 4325 null, and

3. <current_node> is not 4325 a VnT node,

then set 4330 <current_position> to the position of the last

code unit of the text of <current_node> and return 4340

<current_node, current_position>. Note that the position of

the last code unit of the text of a node is the length of the text
of that node minus one.

FIG. 44 illustrates the process 4400 of adjusting the right
position relative to a mapped node array (a node array
mapped to by a Canonical Form) according to a positive right
offset value, in code units. This adjustment traverses the array
from the original right position to the right, counting code
units according to the offset, and ideally arrives at a code unit.
If changes have been made to the document since the offsets
were calculated, then the traversal may halt on a VnT node.
The starting position is typically the node mapped to by the
rightmost code unit of the Canonical Target but may be the
rightmost code unit mapped by the Canonical Prefix if the
target is empty. Because the document may have changed, the
traversal halts when a code unit mapped to from the Canoni-
cal Form is encountered. This makes sense because, if the
encountered code unit had been in the original document then
it would have been included in the target or been part of the
target’s context (prefix or suffix), and would not be traversed
in adjusting for an offset.

Let 4405 <current_node, current_position> be the right
pair that is to be adjusted. Let <traversal_counter> equal the
right offset value. Let <next_node, next_position>be the next
code unit position to the right of <current_node, current_po-
sition> in the node array; if there is no code unit to the right
then set <next_node> to null and <next_position> to 0. Let
<exit_loop> be false.

Set 4410 <exit_loop> to true if:

1. <traversal_counter> is zero or less, the code unit at <cur-
rent_node, current_position> is not the first code unit of a
two-code-unit character, and <current_node, current_po-
sition> and <next_node, next_position> are not both
whitespace,

2. <next_node> is null, or

—_

US 9,356,574 B2

121

3. <next_node, next_position>is mapped to by a code unit of
the Canonical Form.

Note above that exiting the loop is prevented in some
circumstances where the traversal is on whitespace and con-
tinuing the traversal includes additional whitespace. Recall
that contiguous whitespace is counted as a single code unit in
order to avoid some consequences of uncertainty about where
whitespace comes from as well as the inconsequential nature
of whitespace.

If <exit_loop> is 4415 not true, then 4420:

1. decrement the <traversal_counter> if <current_node, cur-
rent_position> and <next_node, next_position> are not
both whitespace,

2. set <current_node, current_position>to the value of <next-
_node, next_position>, and

3. set <next_node, next_position> to the next code unit posi-
tion to the right of <current_node, current_position>in the
node array; if there is no code unit to the right then set
<next_node> to null and <next_position> to 0). The next
code unit position to the right of a code unit position will
sometimes be in another node and there may be intervening
VnT nodes, which are skipped.

Restart the loop above 4410.

It <exit_loop> is 4415 true then return 4425 <current-
_node, current_position>.

FIG. 45 illustrates the process 4500 of adjusting the right
position relative to a mapped node array (a node array
mapped to by a Canonical Form) according to a negative right
offset value, in code units. This adjustment traverses the array
from the original right position to the left, counting code units
according to the offset, and ideally arrives at a code unit.

Let 4505 <current_node, current_position> be the right
pair to be adjusted. Let <traversal_counter> equal the right
offset value. Let <next_node, next_position>be the next code
unit position to the left of <current_node, current_position>
in the node array; if there is no code units to the left then set
<next_node> to null and <next_position> to 0. Let <exit-
_loop> be false.

Set 4510 <exit_loop> to true if:

1. <traversal_counter> is zero or greater, the code unit at
<current_node, current_position> is not the first code unit
of a two-code-unit character,

. <current_node> is null, or

3. <current_node, current_position> is mapped to by a code
unit of the Canonical Form.

In some embodiments (e.g., if acronyms are expanded in
constructing the Canonical Form) a code unit in the Canonical
Form can map to a set of code units in the node array, and the
same set may be mapped to from more than one code unit;
thus, while the mapping of a code unit in the Canonical Form
is usually a single code unit, in its most general form (in
alternative embodiments) the check (above) determines if
<current_node, current_position> is a member of a set
mapped to by a Canonical Form code unit.

If <exit_loop> is 4515 not true, then 4520:

1. increment the <traversal_counter> if <current_node, cur-
rent_position> and <next_node, next_position> are not
both whitespace,

2. set <current_node, current_position>to the value of <next-
_node, next_position>, and

3. set <next_node, next_position> to the next code unit posi-
tion to the left of <current_node, current_position> in the
node array; if there is no code unit to the left then set
<next_node> to null and <next_position> to 0. The next
code unit position to the left of a code unit position will
sometimes be in another node and there may be intervening
VnT nodes, which are skipped.

[\8)

10

15

20

25

30

35

40

45

50

55

60

65

122

Restart the loop above 4510.

If <exit_loop> is 4515 true, then return 4525 <current-
_node, current_position>.

FIG. 46 illustrates a process 4600 whereby content scripts
inform a user that Fragment Hyperlink activation could be
more functional if the user upgraded his user agent. These
actions are taken by content scripts when a user activates 4605
a hyperlink, which is typically done by clicking a mouse but
there are various means to interactively activate a hyperlink.

There are a number of checks that are, in some embodi-
ments, made before the user is presented with an opportunity
to upgrade his user agent.

The following 5 determinations are made:

1. Does the hyperlink have 4610 a “maglink_upgrade”
attribute? This is inserted in documents’ Fragment Hyper-
links if their authors wish to enable Magl.ink upgrades to
their documents’ viewers. One motivation to do this is the
improved user experience when reading a document and
activating Fragment Hyperlinks.

2. Has the user agent not declared 4615 conformance with a
particular embodiment in the document DOM instance? If
the user agent is already upgraded or is otherwise an
expected instance of an embodiment, then it will have
previously declared 2303 this state to the document by
altering the DOM of the document. If the user agent has not
made this declaration, then it may be beneficially updated
to have those capabilities.

3. Has the user not been 4620 offered an opportunity to
upgrade or extend this user agent to an embodiment
recently, or has the user not asked to not be given this
opportunity for a time? In some embodiments this infor-
mation is kept in a browser cookie with a time stamp, for
the domain of the document. If the user deletes his cookies
then this information is lost. By default, less than two
weeks is “recently”, but this is a configurable amount of
time.

4. Has the user not expressed 4625 a desire to never again be
offered a chance to upgrade his user agent by the current
web site? In some embodiments this information is kept in
a browser cookie for the domain of the document. If the
user deletes his cookies then this information is lost.

5. Can this user agent be upgraded or extended 4630 to an
embodiment or can an alternate user agent embodiment be
installed 4635 on this platform? In some embodiments this
information is determined by querying the URI Service
with an HTTP request that identifies the user agent, its
version number, and platform. The location of the URI
Service is, in some embodiments, either a value of the
“maglink_upgrade” attribute of the hyperlink or the value
of a ‘META’ tag. However, since this is communication
between the document content and document scripts, no
coordination on this particular choice need be made with
other components of a distributed embodiment. For
example, if the user agent is the open-source browser Fire-
fox version 13.0 and the platform is Windows 7 service
pack 1, then this information is sent to the URI Service
(that was identified in non-visible document data, perhaps
as the “maglink_upgrade” attribute of the hyperlink); the
return consists of values indicating whether an upgrade or
extension is possible for the user agent and for the platform
in general. This information, concerning this browser and
platform combination, is beneficially cached in state acces-
sible to document content scripts.

If the answer is no to any of the questions as asked above,
then the hyperlink is activated normally; if the user agent is an
embodiment then it may open the hyperlink with full benefits
to the user.

US 9,356,574 B2

123

If the answer is yes to all of the questions as asked above,
then in some embodiments open 4640 a panel window for the
user that explains that he has clicked on a link designed to take
him directly to specific content within the target document
and that his user agent (typically a browser) can be upgraded
or extended to fully process such Fragment Hyperlinks. Then
it gives him choices (typically by clicking on buttons) to
perform the upgrade, see more information, ask him again
later, or to not ask him in the future.

If the user requested 4645 more information, an upgrade,
or an extension, then activate 4650 the URI for the URI
Service in a separate window; in some embodiments the URI
for the URI Service is found in the hyperlink attribute
“maglink_upgrade”. This activation requests an upgrade or
extension, but there is no guarantee that this will happen (e.g.,
the user could decide against an upgrade or the upgrade could
fail). In some embodiments any upgrade occurs asynchro-
nously with this activity. Thus, once an upgrade has been
requested, the Fragment Hyperlink activation halts, before
the user has actually upgraded anything. In a document
served up by the upgrade site of the URI Service, the user will
decide whether to perform the upgrade or extension. If he
does choose to upgrade or extend a user agent, but it is not
possible to upgrade the already running user agent without
restarting it, or if the upgrade is to another user agent (another
piece of software) entirely, then the upgrade is performed and
the appropriate user agent is started. For some user agents it is
possible to upgrade and then either reload the prior state or, in
some cases, to upgrade the running process without ever
shutting it down. The latter is done in some embodiments for
those user agents for which it is possible.

If the user asked 4645 to be reminded later or to not be
asked in the future (i.e., he did not ask for more information,
an upgrade, or an extension) then based on the user’s
response, set 4660 the variables in persistent memory (such as
a cookie), for this current domain, that establish whether the
user is to be reminded in the future and the current time stamp.
Then activate 4670 the hyperlink normally. Note that setting
this persistent memory need not occur if the user requested
more information or an update; if he follows through with a
successful update the information becomes superfluous, and
if he does not follow through or the update failed then the
reason the update failed is unknown and it is inappropriate to
make any change of state; thus the user will get another
opportunity the next time he activates such a hyperlink.

FIG. 47 illustrates the process 4700 of recovery of version
1 Fragment URIs using an external search engine. This pro-
cess includes actions at the user agent and actions at the URI
Service. Communications between the two involve actions by
both, but some actions occur at one or the other. The inputs to
this process are a set of version 1 Fragment URIs; typically
there will only be one but there may be multiple of them.
However, all of the Fragment URIs have the same URI prefix
because they were all Fragment Identifiers or Fragment Iden-
tifier ranges for the same URI. They may have been expanded
from a multi-range Fragment URI in order to have just one
range per URI. (See the processing rules 2220 of FIG. 22.)

We rank a document highest that produces the smallest
Levenshtein distance between the Canonical Targets and the
closest substring in the document’s Canonical Form, with the
minimum Levenshtein distances for each Canonical Target
(i.e., each range) summed. Whenever a Canonical Target was
notunique in the original Canonical Form, the shortest unique
context on the left or right is considered part of that target for
purposes of calculating the Levenshtein distance for that

5

10

15

20

25

35

40

45

50

55

60

65

124

Canonical Target. The left context is used if the left and right
contexts have the same length, or both contexts are used if
neither context is unique.

A perfect recovery would be to find another document with
a Canonical Form that is identical to that of the original
document and which comes from the same domain. A good
recovery would involve finding a single document in which
the target ranges are all found, though perhaps in a different
order. While the difference in quality of recovery can be
enormous between these two possibilities, the combined Lev-
enshtein distance between the Canonical Targets for the origi-
nal document and the best matching Canonical Targets for the
replacement document is zero in either of these cases. Such an
exact match for Canonical Targets in potential replacement
documents that otherwise differ has been found to occur
often. To break such ties we assign an overall quality measure,
which consists of the Levenshtein distance between the origi-
nal target document Canonical Form and the best matching
substring of a replacement document Canonical Form. If two
or more possible replacement documents are identical by
these measures, the shortest is beneficially selected since it
has the least amount of extraneous information. If the original
domain has a high quality result which is not the best, then we
keep two high quality replacement results—the best from the
original domain and the best from all sources.

Other distance or similarity measures are possible between
documents and between canonical targets and best-matching
substrings. Such measures have been studied in the literature
for many years and are often compared directly against the
Levenshtein distance; the different methods have various
advantages and disadvantages. For example, some are more
computationally efficient than the Levenshtein distance and
could be used in alternative embodiments for that reason.
Variants of the Levenshtein distance have been studied and
could be used similarly in an embodiment.

As pointed out earlier, the number of ranges in a Fragment
URI can vary from one to many. A multi-range Fragment URI
is separated into single-range Fragment Identifier URIs when
theuser activates it, as is shown 2220 in F1G. 22. The resulting
single-range Fragment URIs are still closely related and share
the same URI prefix. If the document referenced by a multi-
range Fragment Identifier (and by the set of single-range
Fragment URIs derived from it) has not changed then all of
the original ranges will be found and will have perfect
matches. If the document changed, all combinations of indi-
vidual ranges matching perfectly, partially matching, and not
matching at all can result. When a user activates a multi-range
Fragment URI and one or more of the ranges do not match
acceptably, recovery can be done. In some embodiments,
Fragment URIs with one or more ranges that do not match
perfectly are candidates for recovery. Depending on configu-
ration, either the entire set of related Fragment URIs with at
least one range that did not match perfectly will be submitted
for recovery (which is the default in some embodiments), or
the set that only includes URIs with imperfectly matching
ranges will be submitted.

Related Fragment URIs submitted for recovery are
referred to as “Problem URIs” or “Problem Fragment URIs”,
and sometimes the “Problem URI set™.

At the user agent, issue 4705 an HTTP request to the URI
Service to begin recovery. Results of the recovery attempt
will appear to the user in a user agent display (typically a
browser window). For clarity, in what follows we describe the
behavior of an embodiment in the context of a browser. If the
user has configured his browser to replace the contents of the
browser window used to activate the problem URI set with the
recovery results, or if the problem URI set is based on a URI

US 9,356,574 B2

125

that does not resolve to a document (i.e., the document could
not be found), then display the results in the activation win-
dow that generated the problem URI set. Otherwise, display
the results ina new browser tab or window. The HTTP request
sent to the URI Service comprises the Problem Fragment
URIs.

At the URI Service, for each of the Problem Fragment
URIs that does not already have 4710 associated search cri-
teria, locate 4715 the targeted content for the Problem URI in
the database, resize the content upward if too small and down-
ward if too large, to arrive at a reasonably sized search query,
and store 4720 the result in association with the Problem
Fragment URI. The location is performed by looking up each
Fragment Identifier and finding its associated Common DOM
Form. The lookup is based on the hash of the URI prefix (not
the URI prefix itself since it may have been altered), the time
stamp, and the hash bits of the full Common DOM Form in
the Fragment URI. While unlikely, if more than one Fragment
Identifier matches these lookup criteria then the whole Frag-
ment Identifier is compared with those potential matches that
match the lookup criteria in order to locate the correct Frag-
ment Identifier.

The target content itself is used to construct the search
query in a simple string, starting with the first characters of the
match. The content is found by first locating the range for this
Fragment Identifier in the Common DOM Form, as described
earlier 1158 for process 1100 of FIG. 11. As a consequence of
the design, a range should always be found in some embodi-
ments; however, if something unexpected has occurred and
no matching range is found then the Fragment Identifier is
treated as corrupt and it is dropped from the analysis. If ranges
remain (have not been dropped) then the contiguous text of
the resulting range of the Common DOM Form is taken as the
search string. Note that this text reliably separates terms of
any language for the search engine because the whitespace
(collapsed to one space) and the punctuation are retained. If
the length of this search string is below a configurable mini-
mum, which by default is 50 code units in some embodi-
ments, then the context of the string is added from both sides
equally (unless there is no more on a side) until the minimum
length is reached or the code units of the Common DOM
Form are all in the search string. However, whole words are
added and not single code units (characters that have two code
units are also not split). If the resulting search string exceeds
a configurable maximum, which by default is 600 code units
in some embodiments, it is truncated to the maximum and
then code units are added until any term split by the truncation
is entirely contained in the search string.

This resulting search sequence is used without modifica-
tion because the best search engines perform sophisticated
analysis of such string sequences; for example, they search
for exact in-order matches even if the string is not surrounded
by quotes and give such exact matches a higher relevancy
ranking. They also rank matches containing significant terms
higher than those matching less significant terms.

Reduce 4725 the set of search criteria for the Fragment
URIs to a set that is no more than a configured maximum
number of total code units in length, which by default is 3000,
and no more than a configured maximum number of criteria,
which by default is 8 in some embodiments. First, the number
of criteria is reduced to the maximum by elimination of those
criteria that are the shortest. If two criteria are the same length
then the criterion having the shortest target is preferentially
eliminated. If a tie remains then one of those that tied for
removal is arbitrarily picked and removed. If the resulting set

40

45

50

126

of search criteria exceeds the maximum length in total, then
the longest criteria are truncated (a word at a time) until the
maximum is reached.

Using the full strings from the ranges of'the Problem URIs,
identify 4730 advertisements that target users who may be
interested in that data. This is done beneficially using context
based advertisement targeting. In some embodiments, the text
is scanned for key words or key phrases. The key words or
phrases are taken from an advertising keyword database for
targeting advertisements. Based on the price offered by the
advertiser, with the price potentially depending on matches of
key words or phrases important to a particular advertiser and
advertisement, choose and advertisement to optimize the
return per impression. Note that there may be no key word or
phrase matches, in which case the highest price per impres-
sion offered by advertisers would generally be less. Unless
there are no available advertisers or they are uninterested in
targeting a user on the basis of the strings he seeks to find,
advertisements are chosen for display. In effect a user is
declaring sufficient interest in the subject matter to open a
Fragment Hyperlink to that specific information, which is a
stronger statement of interest in that information than is open-
ing a URI to the whole document, which generally contains
information of no interest to the user. l.e., the user has
revealed more specific information about his interests than
would a user who opens the same page but without specific
identification of what part or parts interest him. However,
unlike most searches performed by the general public, the key
words of the selected text are not identified by the user and are
therefore beneficially extracted by automated means. For
evaluation purposes we determine the pertinent key words or
phrases to be those that match available advertisers’ key word
criteria. The advertisers have already determined which key
words and phrases are meaningful in that those key words and
phrases affect the price paid for a placement of advertise-
ments containing them. Since the price is the parameter to be
optimized, non-keyword words and terms in the text do not
affect the decision.

The Levenshtein distance between a target string and its
best matching substring in a string to be searched (typically
here the Canonical Form or Alternative Canonical Form of a
document) is always between zero and the length of the target
string. To see this observe that if no symbol of a target string
matches any symbol of the string being searched, then creat-
ing a match at the beginning of the string being searched can
be achieved by replacing the first symbols of the string being
searched with the symbols of the target string. This involves a
number of replacements equal to the length of the target
string, so the Levenshtein distance to the best matching sub-
string cannot be greater than the target string length. We
therefore define the “Levenshtein Ratio” for such a best sub-
string match to be the Levenshtein distance between a target
string and its best match in the string being searched divided
by the length of the target string. A “Composite Levenshtein
Ratio” for a set of target strings and their best matches in their
respective strings being searched (often the same string for
the set) is the sum of the Levenshtein distances to their best
substring matches in the strings being searched divided by the
sum of their target string lengths. A Levenshtein Ratio and a
Composite Levenshtein Ratio are constrained as a math-
ematical consequence of their definitions to have values only
between 0 and 1 inclusive, with the best possible matches
having the value of 0.

For purposes of displaying comprehensible results to gen-
eral public users, it is beneficial for larger numbers to imply
the more desirable condition and for the ratio to be expressed
as a percentage, with 100 percent being the best possible

US 9,356,574 B2

127

match. Therefore we define the “Levenshtein Percentage”
(resp. “Composite Levenshtein Percentage™) for a match to
be 100 multiplied by the remainder of 1 minus the Levensh-
tein Ratio (resp. Composite Levenshtein Ratio). Users will be
presented with metrics for substrings, sets of substrings, and
whole document comparisons called “Match Quality”. In
some embodiments, the value of a displayed Match Quality is
calculated as the Levenshtein Percentage or a Composite
Levenshtein Percentage. Note that Match Quality values are
not symmetrical; i.e., the Match Quality of a string A match-
ing in a string B is typically not the same as the Match Quality
of' the string B matching in the string A. If A is a substring of
B then the Match Quality of A in B is 100% but unless B is
also a substring of A then the Match Quality of B in A is less
than 100% and could be arbitrarily small.

In alternative embodiments the Match Quality is taken
from different ranges of values. For example, the range of
Match Quality values displayed could be “Excellent”, “Very
Good”, “Good”, “Fair”, and “Poor”. In alternative embodi-
ments the Match Quality values can be calculated on the basis
of' a multiplicity of distance measures, many of which have
been studied and compared in the literature for advantages
and disadvantages under differing circumstances. These are
often compared directly with the Levenshtein distance. One
reason that there are so many measures is that it is beneficial
if a calculated match that is significantly inferior is also a
match that the user examining it would agree is inferior.
Because this is difficult to achieve for even one user, it may
vary by user, and for some users it may vary depending on
circumstances, in an alternative embodiment users are
allowed to choose between different Match Quality measures
for display and thereby allowed to find a measure or measures
that suit their notion or notions of match quality.

Prior to responding, the URI Service checks its database
for a set of “Replacement Fragment URIs” that are stored in
association with one or more Problem Fragment URI sets.
These Problem URI sets are associated with sets of Fragment
URIs so that replacements for members of a problem set can
preferentially be taken from a single document. Nevertheless,
in the usual case the problem and replacement sets have a
single Fragment URI and the association is relatively simple.
Replacement Fragment URI sets are stored in association
with sets of Problem Fragment URIs if they were determined
to have sufficiently high quality. However, replacements for
some sets of Problem Fragment URIs have higher quality
than others. Thus, provided the quality is above a config-
urable minimum, the replacement sets are compared for qual-
ity with other possible Replacement Fragment URI sets and
the best sets are stored for later retrieval. In general, multiple
sets are kept for a particular Fragment URI set because it is
possible for one replacement set to have the best Match Qual-
ity for the target strings and another to have the best Match
Quality when comparing the original and replacement docu-
ments overall. Further, the best Match Quality for either of
these may not have the same original domain as the Problem
URI set. Thus, in some embodiments, up to four replacement
sets are kept for a Problem URI set. These are:

the Replacement Fragment URI set having the best known

Match Quality for the original target strings in the
replacement document,

the Replacement Fragment URI set having the best known

Match Quality for the original document in the replace-
ment document,

the best known Match Quality values for each of the pre-

vious two matches, but only considering documents in
the original domain.

10

15

20

25

30

35

40

45

50

55

60

65

128

This can result in four Replacement Fragment URI sets if the
sets from the original domain are not the best but are better
than the minimum.

The Match Quality is kept for both the target strings and the
overall document, relative to the replacement document.

In some embodiments, the default configurable minimum
composite Match Quality is 25% for target strings matching
in replacement documents. By default this is the only mini-
mum requirement; even though entire document Match Qual-
ity values are used, their default minimum quality is zero in
some embodiments. Note that a match which meets the mini-
mum Match Quality requirement for target strings must have
a document Match Quality that is greater than zero, since one
or more substrings from the original document match in the
replacement.

If one or more Replacement Fragment URI sets are stored
for the Problem URI set being considered then they are
retrieved. The information for these replacement sets that is
retrieved for transmission comprises:

1. The Replacement Fragment URI set.

2. The Match Quality of individual original Canonical Target
inits replacement documents. There is one of these for each
Problem Fragment URI in the set. (Recall that multiple
ranges of a problem Fragment URI were 2220 separated
into a single Fragment URI for each range when the URI
was initially activated; at this point each Problem Fragment
URI has one range.)

3. A snippet of information for each member of the Replace-
ment Fragment URI set. This will be displayed to users so
they can evaluate the content. These are limited to a con-
figurable maximum length, which by default is 150 code
units in some embodiments.

4. The Match Quality of the original Canonical Targets col-
lectively in their replacement documents. (If there is only
one Problem Fragment URI, then this value is identical to
the individual Match Quality.)

5. The Match Quality of the original document in the replace-
ment document. This uses the Alternative Canonical Forms
of the two documents if one or more of the Problem Frag-
ment URIs uses the Alternative Canonical Form, otherwise
it uses the Canonical Form.

6. The time stamp for when this Replacement Fragment URI
set was generated, which is also when the Match Quality
numbers were generated. Since URI replacements are
themselves subject to potential linkrot, it may be that a
freshly retrieved document would not have the same Match
Quality as when the Replacement Fragment URI set was
created. The user therefore is given a time stamp that indi-
cates when this solution was created.

7. A Boolean indicating whether this Replacement Fragment
URI set comes from the original domain of the Problem
URI set.

The service responds 4735 to the user agent’s HTTP
request with a document that displays the chosen advertise-
ments. The document tells the user that the targeted content
for a link that he activated was partly or completely missing.
The document identifies the problem hyperlink and its source
document (the document from which it was activated). If
there are no Replacement Fragment URI sets from which to
offer the user an existing solution, then the page declares that
a search is underway. (In some embodiments, the user agent
will begin to search when this page is received and displayed
to the user.) If there are Replacement Fragment URI sets then
they are displayed together with their Match Quality param-
eters, how long ago the Match Quality was determined, a set
of snippets (one for each Replacement Fragment URI in the
set, up to a configurable maximum number for each), and a

US 9,356,574 B2

129

hyperlink to the replacement document. In some embodi-
ments the configured maximum number is 6 by default. A
non-displayed part of the document contains the generated
search criteria from which the user agent can construct search
requests against a search engine in order to retrieve the con-
tent. (This is effectively metadata.) The page contains a but-
ton so the user can request search results or additional search
results, depending on whether searching has already
occurred. It also contains a button or buttons, used to return to
previously displayed search results.

If there are 4740 one or more Replacement Fragment URI
sets for the user to choose from in the received document, then
in some embodiments, the document waits 4750 for user
input, in the way some web pages wait for user input before
taking some action. le., if existing replacement Fragment
Hyperlinks are displayed, no search is launched until the user
explicitly asks for it. When the user provides input, if it is not
4755 a request for search results and if it is not 4758 an
activation of a Fragment Hyperlink, then the user input is
processed according to normal user agent behavior and (if the
document is still displayed after such processing) the docu-
ment again waits 4750 for user input.

If there are no 4740 Replacement Fragment URI sets, or
user input is received 4750 indicating that a search should be
started or continued, then request 4780 additional advertise-
ments relevant to the search criteria from the URI Service and
search results (or additional search results) for the distinct
search criteria from the search engine. Display the advertise-
ments and merge 4765 the search results for the different
criteria by combining results for the same URI, including
their snippets, and placing those results in the highest rel-
evancy position held by any of the results for that URI that are
being merged. Interleave the search results from the results
for each of the search criteria, one result at a time. Create
Fragment Hyperlinks from the snippets according to the pro-
cess 1900 of FIG. 19, so that the snippets have version 2
Fragment Hyperlinks, in accordance with the user’s prefer-
ences. Add them to the display document. Then the display
document waits 4750 for user input.

When user input for the document is received 4750, if it is
4755,4758 a Fragment Hyperlink activation, activate 4790
the Fragment URI in the normal way. (Even though part of a
recovery process these are standard Fragment URIs and can
themselves be independently recovered.) However, before
activation the URI prefix and Fragment Identifier are associ-
ated in temporary (not persisted on disk) storage with:

1. the Problem URI set,
2. the search criteria,
3. the Match Quality values for any Replacement Fragment

URI sets, and
4. whether this is an activation of a Replacement Fragment

URI set or a search result.

This temporarily stored information allows the activation
process for the Fragment URI to check if the activation is the
result of a Fragment URI recovery (i.e., it originated as it did
here, from a recovery operation). This stored information
identifies the activation of the URI prefix and Fragment Iden-
tifier as a recovery operation and supports the maintenance of
the URI Service database; in particular it supports the update
of'the URI Service database with new Replacement Fragment
URIsets. These updates are ultimately done, in some embodi-
ments, using a fully retrieved document at the URI Service;
however, as noted earlier the full retrieval of a document in
general means running computationally costly scripts that are
intended for user agent execution during document display,
typically in response to a user’s interactive request for such
display. Therefore, since the user agent is opening the docu-

10

30

40

45

50

130

ment for display at the user’s request, additional processing to
ascertain the quality of the document as a potential replace-
ment, or to verify its quality as a replacement since a replace-
ment document may have been altered, is also performed at
the user agent, as illustrated in FIG. 49. If a document is of
sufficient quality to be a new potential replacement or if it is
an existing replacement document that requires recovery
(which implies the replacement document has changed), then
the Common DOM Form for the document is sent to the URI
Service along with related information for further processing.
The Common DOM Form is not sent if the current version is
already there.

FIG. 48 illustrates the process 4800 of recovery of version
1 Fragment URIs for a URI Service that also serves as the
search engine. Note that the URI Service could perform as the
search engine in this manner (with respect to the user agent,
which sees the URI Service as the search engine), but it could
be that the URI Service is in effect a search engine proxy for
the user agent; such a URI Service would retrieve the search
results from the external search engine in the same way that a
user agent does in FIG. 47, on behalf of the user agent.
However, one advantage of the process 4700 of FIG. 47 is that
of cost when an outside search engine is used; many search
engines allow user agents to make free search requests but
require a search proxy service to pay per search. If the user
agent requests searches from a third party search engine for
free, or the URI Service is a search engine, then the external
costs of the searches are avoided.

This process 4800 involves actions at the user agent and
actions at the URI Service. Communications between the two
involve actions by both, but some actions occur at one or the
other. The inputs to this process are a set of version 1 Frag-
ment URIs; typically there will only be one but there may be
multiple of them. However, all of the Fragment URIs have the
same URI prefix because they were all Fragment Identifiers or
Fragment Identifier ranges for the same URI. They may have
been expanded from a multi-range Fragment URI in order to
have just one range per URI. (See the processing rules 2220 of
FIG. 22.)

The process 4800 of FI1G. 48 is identical to process 4700 of
FIG. 47, except for the location where some search activities
occur. Searching occurred in a separate search service and
merging of search results occurred at the user agent in the
process 4700 for FIG. 47. Both of these occur at the URI
Service in the process 4800 of FIG. 48. Thus, elements of
FIG. 48 have the same numeric identifiers as corresponding
identical elements in FIG. 47. Only some diagram elements
have different numerical identifications 4865, 4868, 4880 and
need be described separately.

For the process 4800 of FIG. 48, control flow for two of the
decisions 4740,4755 enters the process 4880 of FIG. 48
where the user requests additional advertisements and search
results under precisely the same circumstances as described
for the analogous process 4780 in FIG. 47.

If there are no 4740 (in FIG. 48) Replacement Fragment
URI sets or user inputis received 4750 (in FIG. 48) indicating
that a search for more input should be started or continued,
then request 4880 additional advertisements relevant to the
search criteria and additional search results for the distinct
search criteria from the URI Service. Generate 4865 the
advertisements and search results at the URI Service and
merge the search results for the different criteria by combin-
ing results for the same URI, including their snippets, and
placing those results in the highest relevancy position held by
any of the results being merged for that URI. Interleave the
search results from the results for each of the search criteria,
one result at a time. Create Fragment Hyperlinks from the

US 9,356,574 B2

131

snippets according to the process 1900 of FIG. 19, so that the
snippets have version 2 Fragment Hyperlinks, in accordance
with the user’s preferences. Add them to the display docu-
ment. Since this occurs at the URI Service, the request 4880
beneficially has the user’s preference information concerning
how to construct version 2 Fragment Hyperlinks. Send these
results to the user agent, where the user agent displays 4868
them. Then the display document at the user agent waits 4750
(in FIG. 48) for user input for this document.

In alternative embodiments, when the URI Service gener-
ates 4865 search results, Surrogate URI based hyperlinks are
created for the search snippets. The URIs of these hyperlinks
are beneficially indirect (i.e., Surrogate) so that the Redirect
Service will automatically obtain tracking information on the
user when he selects a Surrogate URI for activation. Further,
as noted before, version 1 Fragment URIs can beneficially
identify larger document sections than can usefully be shown
in a snippet. The persistent information kept for search engine
Surrogate URIs at the URI Service is similar to that for any
other Surrogate URI and its version 1 Fragment URI that a
user creates. However, in some embodiments such search
engine created URIs are not marked as having been created by
auser, but as search engine creations. If such a Fragment URI
is activated then the activation contacts the Redirect Service
since it is indirect. If it is copied or stored outside of the user
agent (which occurs e.g., when content of a document is
copied to the clipboard or a document is saved locally), then
a user agent acting according to this embodiment notifies the
URI Service for each such Surrogate URI that is copied. If
activation or another notification of use for such a Fragment
URI does not arrive at the Redirect Service or the URI Service
within a configured time limit, then those URIs are discarded
by the URI Service and Redirect Service. By default this
configured time limit is set to one week. The creator of such
URIs is the search engine, and when a user activates one of
them, that activation goes on his statistics as it would for any
Fragment URI followed.

According to some embodiments a URI Service that also
acts as a search engine maintains a Common DOM Form for
every document that it indexes; it beneficially maintains and
indexes the latest version known for any document that
remains generally accessible through a URI (except docu-
ments excluded for legal reasons, such as requests for exclu-
sion by copyright owners). If a Fragment Hyperlink can be
activated for a particular Common DOM Form, then that
Common DOM Form is beneficially maintained indefinitely
after the document is modified. Thus, discarding of search
engine generated version 1 Fragment URIs that can no longer
be activated allows the potential efficiency of discarding ver-
sions of documents that will never be used to recover a Frag-
ment URI.

FIG. 49 illustrates the process 4900 for feedback to the URI
service for maintenance of Replacement Fragment URI sets.
At the user agent calculate 4905 the collective Match Quality
of the search criteria in the document. While typically the
search criteria will in fact be the same as the target strings
from the Problem URI set that is in recovery, since the target
strings can be arbitrarily long this is not always the case.
Therefore, this value is in general only an estimate of the
Match Quality of the full Problem URI target strings in this
potential replacement document.

If this estimated Match Quality is 4910 not greater than a
configured minimum percentage of either of the correspond-
ing Recovery Fragment URI set’s Match Quality that were
sent for this recovery from the URI Service, then processing
ends 4915 for this 4900 maintenance activity. The configured
minimum percentage is by default 75%; i.e., processing con-

10

15

20

25

30

35

40

45

50

55

60

65

132

tinues if the estimate is at least this minimum portion of these
best known potential replacements. The two Replacement
Fragment URI sets that correspond to this potential replace-
ment are those from the same domain as the original domain
of the Problem Fragment URI set, provided this potential
replacement is also from that same domain. The Replacement
Fragment URI sets that correspond are the pair from other
than the same domain, provided this potential replacement is
not from the same domain. Note however that there may be no
Replacement Fragment URI sets, there may be fewer than 4 of
them, or a particular Replacement Fragment URI set could
occupy more than one position. For example, a replacement
could be the best replacement from any domain as well as
from the same domain according to its composite Match
Quality for the target strings from the Problem Fragment URI
set.

If this estimated Match Quality is 4910 greater than the
configured minimum percentage of either of the correspond-
ing Recovery Fragment URI sets” Match Qualities that were
sent for this recovery by the URI Service, then the user agent
sends 4920 the URI prefix for this document to the URI
Service as a potential recovery URI for the Problem Fragment
URI set. It also sends the Match Quality of the search criteria
and the full hash (64 bits in some embodiments) of the Com-
mon DOM Form for this potential replacement document.

At the URI Service, if this Replacement Fragment URI has
been 4925 checked before, and a) the form of the document
that was checked had the same Common DOM Form hash or
b) it was rejected as a replacement and at the time of rejection
the search criteria Match Quality in this document was as high
as the user agent reports it to be now, then processing ends
4935 for this 4900 maintenance activity.

At the URI Service, if this Replacement Fragment URI has
not been checked 4925 before, it was checked but the form
that was checked did not 4930 have the same Common DOM
Form hash, or it was checked and rejected but at the time of
rejection the search criteria Match Quality in this document
was not as high as the user agent reports it to be now; and if the
service does not yet have 4940 a copy of the Common DOM
Form for this URI that has a matching Common DOM Form
hash value, then send 4945 the Common DOM Form for this
URI to the URI Service. In some embodiments this transmis-
sion uses one of the deduplication technologies to reduce
bandwidth utilized. In some embodiments, the deduplication
technology used is that which is specified in U.S. Pat. No.
5,446,888. According to that specification, the content of the
last version of the Common DOM Form at the Service is used
to avoid re-transmitting information that is common to it and
this new version. These Common DOM Forms are not nec-
essarily implemented as files to be synchronized, as recited in
U.S. Pat. No. 5,446,888, but they can be implemented as files
to be synchronized. While U.S. Pat. No. 5,446,888 does not
use the term “deduplication”, the technology it discloses has
since come to be known as a form of or application of dedu-
plication. As used in some embodiments, the general “key
defining method” recited in the claims of U.S. Pat. No. 5,446,
888 is implemented here as a modified 64-bit GENERAL
rolling hash function described earlier in this document and
used for various purposes in some embodiments of this dis-
closure. The full 64 bits of this GENERAL rolling hash func-
tion are used in some embodiments for the “reference key
values” of the claims and specification of U.S. Pat. No. 5,446,
888. In alternative embodiments a higher number of bits is
used for the rolling hash function for deduplication, such as
128 or 256 bit versions of GENERAL. Also in alternative
embodiments, the number of bits used from the hash function
is fewer than the hash function creates.

US 9,356,574 B2

133

The particular member of the GENERAL family (as modi-
fied here) used for deduplication is determined by sending,
from the recipient to the sender, a new set of random bits that
define the precise member of the GENERAL family of hash
functions used, which in some embodiments includes a new
initial hash value. In some embodiments the block size used is
256 bytes. In some embodiments the initial value and the
particular hash function is sent using SSL. (secure sockets
layer) encryption. In other embodiments other encryption is
used. In some embodiments no encryption is used. In some
embodiments, before transmitting to the sender the new ini-
tial value is generated repeatedly until not less than 25% of'its
bits are 0 and not less than 25% ofits bits are 1; note that most
of' the time these conditions are met by a random sequence of
64 bits. In some embodiments the initial random content of
the table, as sent, uses random values generated by pre-com-
puting random values for this purpose and storing them. In
some embodiments uncolored true random bits (indepen-
dently distributed with 0.5 probability of being O or 1 for each
bit) are generated; in some embodiments this is accomplished
by collecting thermal noise from a charge coupled device
(CCD) having its lens covered, such as simple video record-
ing devices commonly found on computers, and then concen-
trating the entropy in the output and whitening it using a
cryptographic hash function such as SHA-2 256. In other
embodiments other entropy concentrators and whiteners are
used. In other embodiments, this is done by running the
scheduler clock of an operating system against the perfor-
mance clock, and the minute variances in the two clocks are
used to yield random bits that are subsequently whitened and
concentrated. In other embodiments, only pseudo-random
bits are used by application of a pseudo-random number
generator.

Atthe service the Match Quality of the search criteria in the
Common DOM Form is verified. If the Match Quality does
not verify, then processing halts 4950 for this potential recov-
ery URL

Atthe service the composite Match Quality of the Problem
URI target strings in the document are generated 4955, along
with a best substring match in the document for each Problem
URI target string. If the Problem URI target strings are the
same as the search criteria strings, which is a common occur-
rence, then the results of the previous step (4950) are used.
Also generate the Match Quality ofthe Canonical Form (resp.
Alternative Canonical Form) of the document and version of
the Problem Fragment URI set in the Canonical Form (resp.
Alternative Canonical Form) of this potential replacement
document. The Alternative Canonical Form is used if any of
the Fragment Identifiers in the Problem Fragment URI set
uses the Alternative Canonical Form.

At the service, if this potential replacement does not have
4960 a composite Match Quality for the Problem URI target
strings that exceeds a counterpart Replacement Fragment
URI set for this Problem Fragment URI set, and likewise does
not have a document Match Quality that exceeds a counter-
part in the set of Replacement Fragment URI sets, then asso-
ciate 4965 this potential URI prefix with the Problem Frag-
ment URI set as a known inferior replacement. Also store its
Match Quality numbers as well as the Match Quality of the
search criteria in the document.

At the service, if this potential replacement has 4960 a
composite Match Quality for the Problem URI target strings
ora document Match Quality that exceeds a counterpart in the
set of Replacement Fragment URI sets, then create the actual
Replacement Fragment URI set from the best match strings
for the Problem URI target strings and store 4970 this set in
place of its previous counterpart or counterparts. This

10

20

25

30

35

40

45

50

55

60

65

134

includes storage of its Match Quality for the search criteria.
The counterpart or counterparts of a potential replacement
depend on whether the potential replacement is in the same
domain as the Problem Fragment URI set. Note that a docu-
ment can have multiple counterparts; for example, if the
document is a sufficiently good replacement and it is in the
same domain as the Problem Fragment URI set, then it could
replace all four previous Replacement Fragment URI sets for
this Problem Fragment URI set. Move all previous Replace-
ment Fragment URI sets that are no longer one of these sets
into the rejected set for this Problem Fragment URI set.

Most commercial data deduplication uses cryptographic
hash functions, regardless of whether the deduplication is
source or target deduplication, in-line or post-process dedu-
plication, or fixed size blocks versus variable sized blocks.
Cryptographic hash functions are used because they provide
high quality bits and attacking the integrity of the process by
deliberately creating a collision for a cryptographic hash is
thought to be infeasible.

Cryptographic hash functions are not rolling hash func-
tions, so commercial fixed-block size deduplication schemes
for bandwidth optimization often use a rolling hash function
to find potential matches that almost always are true matches,
and then they use a cryptographic hash function to further
ensure that the potential match is a true match. Other dedu-
plication schemes do not use a rolling hash function to iden-
tify potentially matching blocks, but instead use signature
based blocking schemes (also using rolling hash functions
usually to find block delimiters) to establish block bound-
aries, and then calculate a cryptographic hash of each variable
sized block to look for matches. Again, in any such scheme
the use of cryptographic hash functions is thought to ensure
that any match found has not been deliberately arranged by
inserting known collisions in an attack on the system. Itis also
thought to probabilistically ensure that accidental collisions
do not occur.

Drawbacks of deduplication schemes that use crypto-
graphic hash functions or any other single (not randomly
changed) hash function include:

1. The methods are deterministic, so any hash collision that
occurred in such a transmission would deterministically
repeat given the same transmission state. This is mark-
edly different from any simple transmission, whereby
the probability of corruption is independent of any pre-
vious corruption that may have occurred.

2. Once any collision is found for any of the standard
cryptographic hash functions, which includes MDS5,
SHA-1 and SHA-2 hash functions, the known collision
can be used to create a collision in data being dedupli-
cated.

3. Cryptographic hash functions are expensive to compute.

In contrast, benefits from using the method described in
FIG. 49 include:

1. The hash function is highly efficient (more efficient than

any cryptographic hash function).

2. Previously found collisions are useless for creating a
collision in the future, since the specific hash function
that will be used is unknown until its state is generated
and it will likely be used only once (globally in time and
space only once).

3. The method is random; in the unlikely event that a
corrupting collision ever did occur in a data deduplica-
tion process, then sending the same data a second time
would have an independent probability of collision
based corruption.

4. Since the modified GENERAL hash functions are roll-
ing hash functions, for fixed block size source dedupli-

US 9,356,574 B2

135

cation (as in FIG. 49) it is unnecessary to have a primary
rolling hash function to find potential matches and then
calculate the modified GENERAL hash function as a
replacement for the secondary cryptographic hash.
However, simple replacement of the cryptographic hash
with a randomized modified GENERAL beneficially
increases the performance of any such implementation.
However, as shown in the example embodiment of FIG.
49, it is only necessary to calculate one hash function, a
modified GENERAL hash function that is randomly
chosen for each use, as a rolling hash function in a single
pass over the data at the source.

In addition, the GENERAL family of hash functions are
pairwise independent, so the probability of a single uncon-
trived corrupting collision is as good as it can be, which is
therefore at least as good as a cryptographic hash function can
provide.

In other embodiments, data deduplication schemes that in
the prior art use cryptographic hash functions or some other
fixed hash function, are beneficially modified to instead use
randomized modified GENERAL hash functions. Whether
the deduplication scheme used is to store the data efficiently
(as is performed at the URI Service), or to send it efficiently
(as described in FIG. 49), so long as the actual hash function
utilized is changed often enough, the hash is unknown (se-
curely transmitted and both sides are trusted to not disclose
it), or it is used on one side only and that side is trusted, then
no deliberate attack can feasibly be made and any potential
accidental corruption will beneficially (with high probability)
be corrected when the hash function changes. The random
hash utilized can be changed periodically in any deduplica-
tion scheme, although for some schemes and depending on
the amount of data probed for duplicates the period over
which it is changed is for practical reasons longer than for
others. In the deduplication scheme described in FIG. 49, the
GENERAL hash function used can beneficially be changed
for every Common DOM Form transmitted.

FIG. 50 illustrates the process 5000 for version 2 Fragment
URI recovery for Fragment URIs associated with snippets. A
search engine will generate snippets that sometimes are not
part of the target document. For example, a snippet may be
taken from the ‘meta’ tag description of the document or from
some third party description of the document. It may also be
that the search engine has not indexed the document since it
was modified and the target snippet is no longer there. It may
also be that the document has become temporarily or perma-
nently unavailable. In all of these cases, the user has requested
the snippet or snippets in document context, but the document
opened has no such content or is incomplete. If the snippets
are in the navigation history in order to perform a search, then
the user agent embodiment attempts to recover by performing
a search for the content that was expected and the user may
then choose from the search engine results.

Retrieve 5005 any snippet strings associated with the Ver-
sion 2 Fragment URI from the navigation history, and if found
these will become the search criteria for recovery. These
strings are used directly as search criteria by concatenating
them (with spaces between) to arrive at the search criterion.
Modern browsers can accept very long strings as search cri-
teria.

If snippets were not found 5010 for the version 2 Fragment
URI, then end this recovery processing 5025.

If snippets were found 5010 for the version 2 Fragment
URI, then concatenate them in order while ensuring that there
is a space between each; the result is the search criterion. The
search criterion is transformed into an argument for a search
engine URI in a manner specific to the particular search

10

15

20

25

30

35

40

45

50

55

60

65

136

engine, which creates a search engine query URI; the created
URI is activated for display in the user agent. For a web
browser, in some embodiments, a new tab is created for this
activation. In alternative embodiments, a search engine main
web page is opened in a new tab and the search criterion is
entered programmatically into the search criteria input field,
and then the search button is programmatically pushed.

As a consequence the user is presented with results for the
search in a search engine results document. According to
some embodiments, as illustrated in FIG. 17, if the search
engine is not an embodiment that has already provided snip-
pet associated Fragment Hyperlinks, then the user agent cre-
ates version 2 Fragment Hyperlinks for the results snippets
from which the user can choose and activate additional snip-
pet associated version 2 Fragment Hyperlinks. These can in
turn be recovered if the searched content is not found.

The use of snippet search criteria in the manner of FIG. 50
is likely to find the same document that was already activated
by the user, and the user may not recognize this and follow the
link a second time, which can create an unintended recursive
recovery process that attempts to reopen the same document
repeatedly. In some embodiments the possibility of such
unintended recursive recovery is programmatically sup-
pressed. This can be done in various ways that include:

1. Marking the results as hidden content, without otherwise
altering the DOM of the search engine results document.
The user will not see the recursive results in this case.

2. Removing the specific results that match the URI from the
document. The user will not see the recursive results in this
case.

3. Marking the matching results as “In Recovery” in place of
making Fragment Hyperlinks for it. In this case the user
will see the recursive results, and will be able to activate a
non-Fragment Hyperlink to it, but no recovery attempts
will ensue from such activation.

4. Disabling the search engine supplied hyperlinks for these
results. In this case the user will see the recursive results,
but will not be able to activate them.

5. Making such recursive hyperlinks visually obvious; for
example, by making the color of a directly recursive hyper-
link distinctively different from the standard hyperlink col-
ors. In this case the user will see the recursive results, and
will be able to activate them normally, but he will have
visual clues to inform him of what he is doing.

6. Recognizing the recursion after the user has requested
activation, and opening a panel explaining to the user that
he is attempting to open the same document that already
failed to have the content he was looking for previously;
then asking if he wants to continue.

7. Recognizing the recursion after the user has requested
activation but only if there is a repeated failure to find the
content, then opening a panel explaining to the user that he
can attempt to recover a Fragment URI for the same docu-
ment having a URI already in recovery; then asking if he
wants to continue.

8. Combinations are possible; for example, making recursive
hyperlinks visually obvious (5 above) can be combined
with recognition of recursive activation after the fact and
causing the user to confirm his desires (6,7 above).

9. The user is allowed to choose the mode for suppression of
unintended recursive recovery by configuration.

Those skilled in the art will appreciate that there are many
alternative embodiments that achieve selection within a docu-
ment and scrolling to a search snippet taken from search
results, which occurs in some embodiments when a document
is opened from a search results document. In example alter-
native embodiments, snippet strings are incorporated directly

US 9,356,574 B2

137

(as strings) into URIs as another kind of fragment identifier;
this can be practical since search snippet strings are usually
fairly short. In these embodiments, new fragment identifiers
are created from search results as represented in FIG. 18 or
FIG. 19, but the strings are themselves incorporated into the
fragment identifier rather than hash-based ranges. When a
URIhaving such a fragment identifier is opened, only then are
the strings processed into a Canonical Form and the hashes
generated as described in the process 200 of FIG. 2. Then a
search using the generated hash ensues; if the string is not
found then recovery proceeds essentially as described for
some embodiments starting in FIG. 47 or FIG. 48. In other
similar embodiments, the strings are converted to a canonical
form (but not hashed) before incorporation into the fragment
identifier.

In a further modification (in yet other embodiments), there
is no conversion to a canonical form and no hash generated;
instead the document text is searched directly to find the
string. If the string is not found, then recovery proceeds
essentially as described for some embodiments. In other
embodiments, there is no recovery phase if the string is not
found. In yet other embodiments, there is no attempt to find a
partial match. In still other embodiments, the search string is
converted to a canonical form and searched for directly
against the canonical form of the document; i.e., it uses
canonical forms but does not use hashes. As discussed before,
many useful but different canonical forms are possible in
embodiments.

Embodiments using a canonical form and hash based
searching are beneficial because of the efficiency of the
search and because they more reliably find the intended con-
tent. Some embodiments use n-gram hashes in the URI frag-
ments that are created, rather than the snippet strings, in part
because this allows arbitrary length strings to be identified in
Fragment URIs. Recall that, in some embodiments, ifthe URI
is constructed at the search engine (as in the process 1800 of
FIG. 18), the snippet may beneficially only be a part of arbi-
trarily long text identified by an associated Fragment URI.

FIG. 51 illustrates the processes 5100,5101 of navigation
history (including bookmarks) snippet creation for Fragment
Identifier Content Records. One process starts 5101 with
strings and arrives at snippets, and is contained in the process
that starts 5100 with DOM ranges, first obtains strings, and
then using 5101 the string-to-snippet process arrives at snip-
pets.

If there are 5105 more ranges for this URI than the config-
ured maximum number of snippets allowed, then drop 5110
the ranges that come latest in the document from processing
until the number of ranges equals the maximum number of
snippets allowed. In some embodiments, the default maxi-
mum number of snippets allowed is 5. In alternative embodi-
ments, the number of ranges is reduced by removing the
shortest ranges in code units contained until the number of
ranges equals the maximum number of snippets allowed.

Each range remaining is expanded 5115 in both directions
to include complete terms and until a configurable minimum
size is achieved. By default the configurable minimum size is
50 characters. The range’s context is added from both sides
(unless there is no more on a side) until the minimum length
is reached or the code units of the node array are all in the
search string. However, whole terms (words) are added and
not single code units. While it shouldn’t be necessary, since
whole terms are used, we also expand to be sure that whole
characters are included, which could add up to one code unit
on each end.

If there are 5120 fewer strings than the configured maxi-
mum number of snippets and there are 5130 strings longer

10

15

20

25

30

35

40

45

50

55

60

65

138

than three times the maximum length for snippets, then
choose 5135 a longest string for division (there may be more
than one that has the longest length in code units, in which
case pick the one of these appearing first in the DOM), and
divide it at the code unit nearest the middle (if there are two
then divide at the first code unit) putting the middle code unit
in the second string. Ifthe chosen code unitis in a term and not
at the beginning of a term, then add code units from the end of
the first sequence to the beginning of the second until the first
term of the second sequence is wholly in the second sequence.
Insert the first and second strings in order in the position of the
string from which they came in the ordered set of strings.
Then return to check 5120 for the number of strings for
snippet conversion. In some embodiments, the maximum
length for snippets is configurable but by default is 200 code
units (before adding any code units required to include com-
plete terms).

If there are not 5120 fewer strings than the configured
maximum number of snippets or there are no 5130 strings
longer than three times the maximum length for snippets, then
truncate 5125 each string to the configured maximum number
of code units in a snippet and expand it to complete terms or
words (as well as complete characters). By default the maxi-
mum number of code units in a snippet is 200 (before adding
any code units required to include complete terms).

Documents are typically crawled by a search engine web
crawler that periodically downloads every document or its
stand-in (stand-ins are used for example when URIs include
hashbangs according to the Google specification described in
the introduction). Corrections for inaccurate information can
only occur at the time the document is crawled. The effects of
a change to a document can take two weeks or more to take
effect, even with aggressive search engine crawlers. During
the time period when changes are not yet reflected in the
search index, queries against the search engine can repeatedly
produce inaccurate results.

Stale indexes in a search engine affect users by two main
mechanisms. The first is when a user opens or attempts to
open a document that once had information of interest which
is no longer there; in general we call such an event a “Missing
Information Event”. When a Missing Information Event was
caused by a stale search engine index, we call that specific
form of Missing Information event a “Missing Indexed Infor-
mation Event” (MIIE). The second occurs when new infor-
mation is available in a document and a user’s search would
have uncovered it if it were indexed, but the information is not
yet indexed so the user cannot find it; we call this a “Index
Missing Event” (IME). While a document may change in
arbitrary ways that would affect how it is indexed, a stale
index is of no consequence to search service users until it
results in a MIIE or IME event. We dismiss as minor a third
mechanism whereby users read and cognitively process snip-
pets but do not open the corresponding documents; when such
a snippet is no longer present in the document the user may
draw a false conclusion. However, unless the user actually
attempts to open the document and experiences a MIIE, the
information cognitively processed in this way was recently
valid and any conclusions about the information would have
been valid recently and often remain valid. Missing Indexed
Information Events directly waste a user’s time and are more
apparent to users than Index Missing Event occurrences. In
some embodiments, Missing Indexed Information Events are
mechanistically observed, recorded, and the results used to
affect indexing operations at search engine embodiments.

If a search engine interacts with user agents to achieve
efficient document indexing, then user agents calculate the
Common DOM Form and its hash for documents; then the

US 9,356,574 B2

139

search engine and user agent together determine if the docu-
ment should be re-indexed at that time. The hash is sent to the
search engine where it is compared with the hash of the
document’s latest known version (known at the search
engine). When they differ, there has been a change to the
document so it becomes a candidate to be re-indexed. The
user agent transmits the document’s Common DOM Form to
the URI Service for indexing if the URI Service ultimately
determines that the document should be re-indexed at that
time. This transmittal of the Common DOM Form, in
embodiments, utilizes deduplication technology. In some
embodiments the deduplication technology used is as
described in U.S. Pat. No. 5,446,888 to reduce the bandwidth
utilized in a manner similar that described 4945 for FI1G. 49.

However, additional checks and determinations are benefi-
cially used because many documents have small parts of their
content that dynamically change and may change with every
access (e.g., acounter for the number of document accesses or
a field for fine-grained current time). For many documents,
the behavior described so far essentially always results in
transmittal of a new Common DOM Form to the search
engine for re-indexing. While deduplication reduces the
bandwidth and storage costs in such cases, so long as Frag-
ment Identifier ranges do not include the dynamic content, the
document may not need to be kept in all of its versions.
Various strategies can be used to alleviate this drawback. Inan
embodiment the URI Service recognizes that, for many docu-
ments, only a small part of the total document has such
dynamic content, and those documents are put on a schedule
for updates. l.e., such documents are only re-indexed after an
amount of time since the last re-indexing. In another embodi-
ment, the last configurable numbers of stored versions are
compared, and if a configured minimum amount of their
Alternative Canonical Form content is stable in all of those
versions, then a version 2 Fragment Identifier is created with
ranges that identify the stable parts of the document. By
default the configured amount that should be stable is 90% of
the Alternative Canonical Form text over a maximum of 5
ranges. Such a document will typically have multiple stable
ranges that are encoded into the version 2 Fragment Identifier.
If the hash for the full document differs at the URI Service,
and the timeout for general re-indexing has not been exceeded
for this document, then this version 2 Fragment Identifier is
sent to the user agent and the user agent determines if the
version 2 Fragment Identifier matches in the document; if it
does not then the new Common DOM Form is sent to the URI
Service. Some embodiments use both of these mechanisms as
well as user access frequency to establish how often to re-
index a document.

FIG. 52 illustrates a distributed process 5200 that supports
efficient search engine indexing by integration of user agent
activities into the indexing process. User agents and the
search engine use Common DOM Form hashes and Fragment
Identifiers to establish whether content has been altered and if
s0, by how much. In some embodiments, the user agent acts as
an indexing agent in conjunction with opening documents;
the user agent hashes the document content and sends the
hash for comparison, which allows inexpensive comparison
with prior versions of the document. In contrast to current
practice whereby search engines download a document peri-
odically, if the hashes compare positively then it is unneces-
sary for the search engine to download the document contents
to ascertain if it changed. If it changed and a determination is
made to re-index the document, then by default the user agent
sends the Common DOM Form to the search engine for
re-indexing. Again in contrast to current practice, it is thereby
unnecessary for the search engine to download content and

10

15

20

25

30

35

40

45

50

55

60

65

140

possibly run scripts to alter that content in order to obtain the
current content—it has already been provided by the user
agent. In addition, user agents can be configured so they only
inform the search engine of the document status, without
uploading the document’s Common DOM Form to the search
engine. This can be useful for bandwidth limited devices such
as cell phones, or for users who do not wish to send content to
search engines. In that case the search engine may directly
retrieve the document content, or it may wait until a user agent
that is configured to send document content opens the docu-
ment. This activity takes place after a document has been
downloaded at the user agent, which download is typically
requested interactively by a user, so that he can view the
document (see the indexing actions 2568 of FIG. 25).

Ifthis feature is included in an embodiment, and the search
engine is also the URI Service, then the preferred behavior is
that search engine records for a URI be updated whenever the
URTI’s Common Dom Form is updated; for example, such an
update can occur when version 1 URIs are created as in FIG.
11. The reduction in traffic is one benefit for unification of
search engine and URI Service embodiments. If users regu-
larly create Fragment Identifiers for a particular URI, then
explicit updates resulting from Fragment Identifier creation
can virtually eliminate the need for the explicit search engine
updates, as described for this 5200 process. Another benefit is
that an often-accessed document that has not been updated
need not be downloaded and re-indexed, which is established
because the user agent, in conjunction with the search engine
embodiment, determines that the document has not changed
and need not be re-indexed. Another benefit is the efficiency
of the search engine in that it does not download and run the
document scripts to establish content, which is done by the
user agent; this processing is not an added burden to the user
agent because it only does this when the user requests that the
content of the document be downloaded and displayed.

The URI prefix (i.e., not the full URI including Fragment
Identifiers) is used to identify document content since search
engine indexing operations do not depend on Fragment Iden-
tifiers. However, as already noted Conventional Fragment
Identifiers may affect document content and therefore can
affect search engine indexing operations. For the rest of the
description of this 5200 process, “URI” means the URI prefix
(i.e., the URI absent all Fragment Identifiers).

In order for a user agent comprising some embodiments to
support search engine indexing, it keeps in its persisted navi-
gation history for each user’s role an association between
accessed URIs (URI prefix) and a time stamp. This record
may be empty, but if it is populated for a user’s role and URI,
then the time stamp gives the Coordinated Universal Time
when the user agent last informed the search engine that it
accessed the URI. A user agent updates this information after
notifying the search engine of an access. The message to the
search engine contains the URI, the time stamp, and the MIIE
status of the access. The MIIE status for this access is passed
into this process 5200 when it is invoked, see where this
process is invoked 2568 from FIG. 25.

If 5205 “no_crawl” is a directory name in the path of the
URI ofthe document, or the document is marked “noindex” in
a head meta tag, then the user agent halts 5250 this indexing
support process. Note that “no crawl” in the URI path and
“noindex” in a meta tag are well known conventions to pre-
vent indexing by indexing services, including search engines.
To prevent indexing, by using information in the document’s
HTML, a meta tag can be placed in the head section of the
document similar in form to: <meta name="robots”
content="noindex”>.

US 9,356,574 B2

141

1£5205 “no_crawl” is not a directory name in the path of the
URI of the document, the document is not marked “noindex”
in a meta tag of the header; and a) the user agent has not 5207
notified the search engine of accessing this URI within a
configurable minimum <mh> number of hours or b) this is
5207 a Missing Indexed Information Event (MIIE) at the user
agent; then the user agent calculates 5210 the Common DOM
Form and its hash for the retrieved document. By default
<mh> is 24 hours. The user agent sends the URI, its Common
DOM Form hash, and the MIIE status for this access in an
access notification to the search engine. With this information
the search engine updates 5215 the global and URI specific
MIIE and access statistics.

The accumulated histories of missing indexed information
events (MIIE) and access events for a URI are kept at the
search engine in a compact form that efficiently uses few state
variables. An exponential decay in the weight function is used
to retain a long history in little space and at low computational
cost. The configurable exponential decay variable is called
“Exponential_Decay” and its default value is chosen together
with the configurable period over which events are counted,
stored in a variable called “TimePeriod”. The default value of
TimePeriod is one day and the default Exponential_Decay
value is 0.95169. With this default Access_Period and Expo-
nential_Decay, the number of events for any one day period is
weighted approximately twice as much as a one day period 14
days prior. In some embodiments, the state variables (de-
scribed as a type followed by a name) for keeping the fre-
quency history for these events are:

Large Integer: URI_Hash

Floating Point Frequency_History
Floating Point Frequency_History2
Integer: Accumulator

Integer: LastTimeStamp

Floating Point Exponential_Decay
Integer: TimePeriod

Integer: BaseTime

The values Exponential_Decay, BaseTime, and TimeP-
eriod are the same for a large number of otherwise indepen-
dently kept statistics, so for each such additional statistic, the
additional space required is two floating point numbers, two
integers (64 bits each in some embodiments), and the state to
associate a particular statistic with its related information,
i.e., the hash of a URI (128 bits in some embodiments). There
are three main operations on this state; the first initializes the
Frequency_History, Frequency_History2, Accumulator, and
LastTimeStamp to zero. The common state variables are pre-
set for all event histories in some embodiments; Exponential-
_Decay has the value 0.95169, TimePeriod has the value of
one day in seconds, and BaseTime has the value of midnight
Jan. 1, 1601 at the prime meridian in Greenwich, England.
Note that if time is retrievable as Coordinated Universal
Time, which is the most commonly available and accurately
duplicable by computation devices, then the value of Base-
Time is conveniently zero on most modern computation
devices. The two repetitive operations are update and retrieve.
An access (limited to one per period per user role) or MIIE
event for a URI at a user agent ultimately causes the update
procedure for the particular event type to be performed at the
search engine for the URI. Once the state for a particular URI
and event type is found, using the URI_Hash to identify the
applicable set of state variables, the update procedure is
executed against that state as follows:

Update Weighted Frequency

Updating weighted frequency data for a repeating event

comprises the following steps:

5

25

30

35

40

45

65

142

1. Calculate the number of TimePeriod boundaries (from
BaseTime) that have been traversed (by the advance of
time) since the LastTimeStamp for this event; let <chb>be
this calculated value.

2. If <chb> is greater than zero, then:

a. Modify the Frequency_History and Frequency_His-
tory2 by multiplying them by Exponential_Decay.

b. Add the Accumulator to Frequency_History and the
Accumulator squared (multiplied by itself one time) to
Frequency_History2.

c. If <chb> is greater than 1 then multiply the Frequency-
_History and Frequency _History2 by Exponential_De-
cay raised to the power (<chb>-1). E.g., Frequency-
_History =Frequency_History*(Exponential_Decay
Gonb>=D)

d. Set Accumulator to zero.

3. Increment Accumulator.

4. Set LastTimeStamp to current time.

In order to make determinations based on the frequency of
events, the weighted average frequency, standard deviation
for that weighted average frequency, and adjusted weighted
average frequency are retrieved for those events. These sta-
tistics are used to help decide when and how often to re-index
a URI. The state for a weighted event is changed when the
event occurs, but the frequency statistics are affected by the
passage of time even if an event does not occur (in which case
the average frequency tends to be falling). Thus, accounting
appropriately for the passage of time in the state of these
statistics is undertaken before results of the weighted statis-
tics are calculated and returned. Once the state for a particular
URI and event type is found by using the URI_Hash to iden-
tify that state, the retrieval procedure is executed against that
state as follows:

Retrieve Weighted Frequency
Retrieving a weighted frequency and standard deviation

for a repeating event comprises the following steps:

1. Calculate the number of TimePeriod boundaries (from
BaseTime) that have been traversed (by the advance of
time) since the LastTimeStamp for this event; let <chb>be
this calculated value.

2. If <chb> is greater than zero, then:

a. Modify the Frequency_History and Frequency_His-
tory2 by multiplying them by the configurable value of
Exponential_Decay.

b. Add the Accumulator value to Frequency_History and
the Accumulator value squared (multiplied by itself
once) to Frequency_History2.

c. If <chb> is greater than 1 then modify the Frequency-
_History and Frequency_History2 by multiplying them
by Exponential_Decay raised to the power (<chb>-1).
E.g., Frequency_History=Frequency_History*(Expo-
nential_Decay ">~

d. Set Accumulator to zero.

3. Set <average-events-per-period> to Frequency_History*
(1-Exponential_Decay).

4. Set <variance-events-per-period> to ((Frequency_His-
tory2*(1-Exponential_Decay))-(<average-events-per-
period>*<average-events-per-period>)).

5. Set <std-dev-events-per-period> to the square root of
<variance-events-per-period>.

6. Return <average-events-per-period> and <std-dev-events-
per-period> as the weighted average and standard devia-
tion. Also return the <adjusted_average_events_per_pe-
riod> as the <average-events-per-period> added to three
times the <std-dev-events-per-period>. (This <adjust-

US 9,356,574 B2

143

ed_average_events_per_period> can be calculated from

the other returned values, but it is convenient for it to be

generated here.)

For each indexed URI, the search engine keeps such fre-
quency statistics for two event types, user agent accesses of
the URIL and missing indexed information events (MIIE);
these are called the “Access Record” and “MIIE Record”
respectively. Based on these two statistics for the history, a
maximum frequency for indexing of the URI is determined;
this is done in such a manner that a URI that users access more
often is permitted to be indexed more often. However, a URI
that is accessed frequently may not change often; embodi-
ments discover that the URI content has not changed and
thereby avoid unnecessarily re-indexing a URI that has stable
content. Even if the content at a URI changes regularly, those
changes may not result in missing indexed information
events, which are most annoying to users. Therefore, MIIE
events are tracked for each URI (in some embodiments), and
some embodiments are arranged so that higher numbers of
MIIE events result in more frequent re-indexing for a URL
The MIIE history records the events whereby users attempt to
access information on the basis of search engine results, but
cannot find it.

Access events and missing indexed information events
occur at widely differing frequencies, and a missing indexed
information event is more important than an access event. In
an alternative embodiment only the MIIE events are used. In
some embodiments a global statistic (i.e., across all URIs) is
kept for all accesses by user agents and all MIIE events by
user agents (that is user agents that are embodiments), these
two statistics are kept identically using the same weighting,
exponential decay, and time period as the weighted frequency
statistics for each individual URI. Each day these statistics are
examined for the weighted average of accesses to MIIE
events, and the ratio of accesses to MIIE events is computed
as the <Global Accesses to MIIE Ratio> for that day. This
number is used to normalize the importance of MIIE events
by multiplying the MIIE event statistics for a URI by this
ratio, before adding the two statistics together to form a single
statistic for each URI. For this calculation the <adjusted_av-
erage_events_per_period> statistic is used.

In some embodiments there are two globally configured
values that limit the effects of access events and MIIE events
on the frequency of re-indexing operations. In computing
whether a particular URI may be re-indexed (at the present
time), the answer will be yes if it was last indexed more than
a configurable amount of time in the past called “Max_Index-
_Period”, and the answer will be no if it was last indexed less
than a configurable amount of time in the past called “Min-
_Index_Period”. By default Max_Index_Period is 14 days
and Min_Index_Period is 15 minutes. These periods define
related frequencies by taking their reciprocal. For example,
the reciprocal of Min_Index_Period is 96 per day. Thus the
frequency of re-indexing URIs can range over more than three
orders of magnitude when using the default values of Min-
_Index_Period and Max_Index_Period.

For each URI, its combined statistic <adjusted_averag-
e_events_per_period> is multiplied by a global <Index-to-
Access> ratio, and then the reciprocal is taken to compute the
indexing period for the URI. If the computed indexing period
for this URI is less than Min_Index_Period, then the indexing
period is set to Min_Index_Period; if it is greater than Max-
_Index_Period, then the indexing period is set to Max_Index-
_Period. For each URI, the result of determining 5245 “Do
the access and MIIE frequency statistics for this URI support
re-indexing now?” is yes if the last time the URI was indexed
plus this computed indexing period is less than current time,

5

10

15

20

25

30

35

40

45

50

55

60

65

144

otherwise the result is no. This computed indexing period
need not be realized; even a regularly accessed URI may be
stable and re-indexing is done at most once every Max_In-
dex_Period if no changes or MIIE events are detected for that
URL

When used in this way to affect the indexing period for all
URISs, the <Index-to-Access> ratio directly affects and can be
used to control the incoming bandwidth to the search engine.
In one configuration of some embodiments, the <Index-to-
Access> ratio is dynamically adjusted to maintain a config-
ured set point for the incoming network bandwidth from those
indexing operations that are described in this 5200 process.
This control is done using well known means to avoid oscil-
lations in such a control feed-back loop, and in particular a
MIAC (Model Identification Adaptive Control) system is
used in some embodiments. Those skilled in the art will
appreciate that useful control can be achieved by many auto-
mated control mechanisms that have been extensively docu-
mented in the prior art including the popular PID (Propor-
tional Integral Derivative) control, adaptive control
mechanisms in general of which MIAC is an example, the
so-called Alpha-Beta and related filter (e.g., Kalman filter)
based control mechanisms, and many others. In some
embodiments MIAC adaptive control mechanisms are used,
which has the benefit of an adaptive model that automatically
(adaptively) adjusts to the changing Internet environment.

The chosen MIAC control mechanism does not explicitly
model the periodically varying levels of Internet usage, which
can vary widely over a typical 24 hour period. Internet usage
also varies during events of high public interest and at other
times, like weekends and holidays. This configuration instead
allows the control system to adjust (adaptively) to both some-
what predictable and unpredictable variances alike, which
means that the <Index-to-Access> ratio may vary widely
when usage varies significantly from the average. In this
configuration some embodiments attempt to keep bandwidth
usage essentially constant, which is useful if the search
engine has a fixed limited bandwidth, such as a bandwidth
limited “pipe” into the Internet, where the usage of the pipe
must remain below that limit over short time intervals.

Some embodiments provide, also by user configuration,
for a control model that instead attempts to find a stable
<Index-to-Access> ratio, and allows the short term band-
width to vary widely about a configured set value for the
average bandwidth. In this configuration the short term band-
width usage rises and falls; for example, over 24 hour periods
where bandwidth usage may vary widely. This configuration
may be more useful where the instantaneous bandwidth is not
limited. In such circumstances the equipment is (for practical
purposes) unlimited in its ability to carry bandwidth but there
is nevertheless a cost based on the total amount of information
that flows over time. This total information flow and its cost
would typically be controlled. While this configuration is
superior in that re-indexing can come more rapidly when
users are accessing the indexed information the most, it may
not be practical in some situations.

Also by configuration in some embodiments, the user can
choose a combination of these two control mechanisms. In
this combined mechanism there is both a target average band-
width controller and an instantaneous bandwidth controller;
both control systems run simultaneously. The <Index-to-Ac-
cess> ratio actually used at any point is the minimum of the
two control outputs. This keeps short term usage below a
configured maximum, but within that constraint the average
or total usage is adjusted to a different (lower) set point. Note

US 9,356,574 B2

145

that for this configuration, setting the average usage above the
maximum usage is equivalent to having no average band-
width control system.

In some embodiments, both control mechanisms use a
MIAC (Model Identification Adaptive Control). Those
skilled in the art will appreciate that similar benefits can be
achieved by the use of many other control mechanisms
described in the prior art. Those skilled in the art will also
appreciate that adjusting the event weighted averages with the
weighted standard deviation can be performed using various
mechanisms, such as Kalman filters with various coefficients,
and with a multiplier other than 3 for the standard deviation
adjustment (including a multiplier of 0), without departing
from the teachings herein. A benefit of embodiments using
the examples presented here is that they are particularly effi-
cient computationally.

In alternative embodiments the <Index-to-Access> ratio is
a configurable value that is changed only by direct user inter-
action (e.g., by the system administrator for the search
engine), whereby it is set to an arbitrary value.

The search engine checks 5225 whether it indexes this
URI; if it does not, or if the Common DOM Form hash
matches 5230 the hash of the document’s latest Common
DOM Form, then this process halts 5250.

The determination of whether the search engine indexes
5225 a particular URI presumes that the user agent has
already established that the document is not marked inter-
nally to prevent indexing (see the discussion of meta tag
appearances of “noindex” above). The search engine first
verifies that there is no “no_crawl” directory name in the URI
(which was checked at the user agent). It then checks its
database for prohibitions against indexing this URI and
instructions specifically enabling of indexing this URIL. If
there is no robots.txt file that governs the domain of the URI,
or if the robots.txt entry governing the domain has a time
stamp older than a configured maximum age, then the search
engine downloads (if it exists) the robots.txt file for the
domain. By default the maximum age is two weeks. If the
robots.txt file exists and was downloaded, then it is used to
update the database allowing indexing for the domain.

Also, if the database has configured information about this
site that either prohibits or enables its being indexed, then the
configured information governing indexing is used as a pri-
ority over the contents of the robots.txt file. For example, the
configured information could have resulted from a request by
a copyright holder that the site not be indexed. These rules for
determining whether the search engine will index a document
are based on common practice in the industry, which is only
partially supported by standard specifications or legal regu-
lations. For example, the “robots.txt” file mechanism is
industry practice, but is not explicitly governed by any legal
requirement or standards body.

If'the Common DOM Form hash does not match 5230 this
URT’s latest Common DOM Form hash at the search engine,
then the search engine marks 5248 the URI as modified in its
database.

If the maximum time interval for re-indexing this URI
(Max_Index_Period) has not 5235 been exceeded at the
search engine, there are 5240 at least a globally configurable
<m> (by default 3) past Common DOM Forms at the search
engine for this URI, and this URI’s access and MIIE fre-
quency statistics (at the search engine) do not support 5245
re-indexing this URI now, this process halts 5250.

The search engine keeps, for each URI, a time stamp for the
lasttime it was indexed or re-indexed. This time stamp is used
to determine if re-indexing the URI is allowed (supported) by
comparing now (the current time) with the last time of index-

20

30

40

45

146

ing the URI plus the minimum time interval for re-indexing
the URI, which is computed as described above using (for part
of the computation) the MIIE and access statistics for the
URI. If the current time is the largest of the two values in the
comparison, re-indexing is allowed (supported).

If the configurable maximum time interval for re-indexing
(Max_Index_Period) has not been 5235 exceeded, there are
5240 at least a configurable <m> past Common DOM Forms
for this document, the access and MIIE frequency statistics
for this URI (at the search engine) support 5245 re-indexing
this URI now, the <m> most recent Alternative Canonical
Forms for this URI differ 5255 in less than a configurable <k>
percent (after matching up to a configurable <maxMatch>
substrings), and none of the last <m> versions have a differing
title and description, then at the search engine construct or
retrieve from memory a version 2 Fragment Identifier for this
document that has up to <maxMatch>ranges for the common
content of the Alternative Canonical Forms of the last <m>
versions of the Common DOM Form. Send 5260 this Frag-
ment Identifier to the user agent together with a hash of the
Canonical Form of the title and description. By default <max-
Match> is 5 to ensure that very small parts of documents are
not used to achieve similarity; in alternative embodiments
<maxMatch> can vary based on the length of the document.

In the some embodiments, the determination that a set of
Alternative Canonical Forms for a URI are 5255 sufficiently
similar is done by finding a longest common substring in the
<m> most recent Alternative Canonical Forms, which is
known in the art as the <m>-longest common substring prob-
lem; there are multiple solutions in the prior art for finding
longest common substring from a set of input strings. Then
the longest common substring between the remaining parts is
found and so on. Note that there could be an additional
remaining part for each original input string after each round
of'looking for the longest common substring. This is repeated
until there are <maxMatch> common substrings or there are
no remaining common substrings. If the sum of the lengths of
the common substrings in code units is within <k> percent of
the length of the longest Alternative Canonical Form, then the
version 2 Fragment Identifier described above is made 5260
using those substrings and it is sent to the user agent. By
default <k>is 10%.

If, at the user agent, the version 2 Fragment Identifier
matches 5265 (perfectly) in the document’s Alternative
Canonical Form, the hash of the Canonical Form of the title
and description also matches 5265 the hash of the title and
description of the document, and the user agent is configured
5270 to not provide indexing content (i.e., the actual content
to be indexed for this URI will not be provided by this user
agent), then the user agent informs 5280 the search engine
that re-indexing is indicated and this process halts 5250.

If, at the user agent, the version 2 Fragment Identifier
matches 5265 (perfectly) in the document’s Alternative
Canonical Form, the hash of the Canonical Form of the title
and description also matches 5265 the hash of the title and
description of the document, and the user agent is configured
5270 to provide indexing content (i.e., the actual content to be
indexed for this URI will be provided by this user agent), the
Common DOM Form is sent 5275 to the search engine from
the user agent for indexing or re-indexing, at the search
engine the URI is indexed or re-indexed 5285 and the URI is
marked as unmodified (unmodified since last indexing), the
time stamp for the last time this URI was indexed is set 5285
to now, and this process halts 5250.

If:

US 9,356,574 B2

147

1. at the search engine the configurable maximum time inter-
val (Max_Index_Period) for re-indexing has been 5235
exceeded;

2. there are 5240 fewer than a configurable <m> past Com-
mon DOM Forms for this document; or

3. a) the access and MIIE frequency statistics for this URI (at
the search engine) support 5245 re-indexing this URI now,
and

3. b) the <m> most recent Alternative Canonical Forms for
this URI differ 5255 in more than a configurable <k>
percent (after matching up to a configurable <maxMatch>
substrings) or the <m> most recent Common DOM Forms
differ in the title or description; then:

1.ifthe user agent is configured 5270 to not provide indexing
content (i.e., the actual content to be indexed for this URI
will not be provided by this user agent), the user agent
informs 5280 the search engine that re-indexing is indi-
cated and this process halts 5250; and

2. otherwise (i.e., if the user agent is configured 5270 to
provide indexing content), the Common DOM Form is sent
5275 to the search engine from the user agent for indexing
or re-indexing, at the search engine the URI is indexed or
re-indexed 5285 and the URI is marked as unmodified
(unmodified since last indexing), the time stamp for the last
time this URI was indexed is set 5285 to now, and this
process halts 5250.

FIG. 53 illustrates by example the relationship between
Canonical Forms and Alternative Canonical Forms. The
Canonical Form 5320 has less text than the Alternative
Canonical Form 5350. The extra text appearing in 5350 is the
transformed (i.e., the whitespace is collapsed and the ‘F’ in
the node array appears as ‘f” in 5350) text from the ‘Alt’ node
5312. All text in “Text’ nodes appears identically in both the
Canonical Form and Alternative Canonical Form. If these
node arrays were from an HTML document using some
embodiments, the ‘Alt” node 5320 would be an image, per-
haps a stylized image of ‘For’, and the image would have an
‘alt’ attribute of ‘For’ or ‘For’.

FIG. 54 illustrates the Common DOM Form structure,
including the Common DOM Node Array and compacted
representation for transmission. The two structures
5405,5450 represent the same segment of a Common DOM
Form instance; they could be a complete Common DOM
Form except that they do not have the required initial text
nodes for title and description. They both illustrate the fact
that a Common DOM Form and a node array (as used in
processing DOM instances into a node array form) are essen-
tially alike in structure; but unlike a node array, Common
DOM Form nodes are not also in some separate DOM
instance. In a sense, a Common DOM Form is a node array
structure with an additional pair of text nodes. However,
because the nodes of a Common DOM Form instance are not
also nodes of a related DOM instance, the Common DOM
Form may be transmitted. Note that each node 5405,5450 has
a ‘Len’ attribute, which is the length of the text for nodes
having text. For VnT nodes the Len attribute represents the
number of VnT nodes represented. In the Common DOM
Form this is always 1 but in the compact representation (for
transmission) it represents the number of contiguous VnT
nodes. This is possible because the content of VnT nodes is
not represented in the Common DOM Form. Thus we have
the compaction of adjacent VnT nodes 5420,5430,5435 into
one node 5460 for transmission. Notice also that the Common
DOM Form 5405 segment of F1G. 54 corresponds to the node
array 5330 of FIG. 53; which illustrates the combination of
adjacent text nodes 5335,5340 into a single text 5440 node in
a Common DOM Form.

25

35

40

45

55

148

FIG. 57 illustrates Redirect Service actions on receiving an
HTTP request for an indirect Fragment URI, which is also
called a Surrogate URI. It is here that the Redirect Service
informs a user that Fragment Hyperlink activation could be
more functional if the user upgraded his user agent. These
actions are taken by the Redirect Service, the URI Service,
and the scripts (executing on the user agent) that are served
out by these two services in documents.

There are a number of checks that are, in some embodi-
ments, made before the user is presented with an opportunity
to upgrade his user agent.

The following 5 determinations are made:

1. Does the Fragment URI identify 5710 specific content, i.e.,
does the Fragment Identifier that the indirect Fragment
URI is associated with have a range (this is the usually
expected case); and is the HTTP request without an
“X-Mag-Link-Agent” header.

2.1s 5715 the version number of the implementation the latest
for the platform and user agent? This version number is
parsed from the value of the X-Mag-Link-Agent custom
HTTP header. The platform and user agent is ascertained
from the cookie for the domain of the Redirect Service.
However, if there has never been a redirect through the
Redirect Service for this user agent on this platform, and no
document of the URI Service or Redirect Service has ever
been opened, (or cookies have been deleted at the user
agent) then there will be no cookie. If there is no such
cookie the Redirect Service gets a cookie by opening a
special page for that purpose, which is sent to the user agent
and which has scripts to perform an accurate determination
of the platform and user agent, place it in a cookie, and
return the information back to the Redirect Service. If this
special page is used to make the determination, then redi-
rects are script based and not 302 or 303 redirects.

3. Has the user not been 5720 offered an opportunity to
upgrade or extend this user agent to an embodiment
recently, or has the user not asked to not be given this
opportunity for a time? In some embodiments this infor-
mation is kept in a browser cookie with a time stamp, for
the domain of the document. If the user deletes his cookies
then this information is lost. By default, less than two
weeks is “recently”, but this is a configurable amount of
time.

4. Has the user not expressed 5725 a desire to never again be
offered a chance to upgrade his user agent by the current
web site? In some embodiments this information is kept in
a browser cookie for the domain of the document. If the
user deletes his cookies then this information is lost and
must be regenerated by this 5700 process.

5. Can this user agent be upgraded or extended 5730 to an
embodiment or can an alternate user agent embodiment be
installed 5735 on this platform?

If the answer is no to any of the questions as asked above,
then the Surrogate URI is redirected 5770 without first giving
the user an opportunity to update his user agent. In some
embodiments, if the redirection occurs without first generat-
ing the cookie information, which is described above when a
cookie was not present in the HT'TP request, then the URI is
redirected using either a 302 or 303 HTTP redirect, with the
determination between the two depending on the platform
and user agent information, as well as configuration informa-
tion, as described earlier in this document. In the redirect
response, some embodiments use a custom header having a
name that is prefixed with “X-"; an example implementation
uses the header name “X-Mag-Link-Fragments”. Both the
Fragment Identifier and any Conventional Fragment Identi-
fier associated with the indirect Fragment URI are included in

US 9,356,574 B2

149

the custom header value. This is done with the Fragment
Identifier first, followed by (if one exists) the Conventional
Fragment Identifier. These include their initial hash (‘#’)
character so that a simple search for ‘#’ efficiently parses and
separates the two fragment identifiers. Ifthere is an associated
Conventional Fragment Identifier, it is appended to the URI
prefix (of the Fragment URI) at the Redirect Service to obtain
the URI that the redirect response conventionally points to.
This redirect HTTP message is sent to the user agent. (If the
user agent is an embodiment, which is capable of processing
the Fragment Identifier, then the Conventional Fragment
Identifier is removed and the Fragment Identifier appended as
illustrated in FIG. 24B.) In this way the redirect is beneficially
the same, when executed by the Redirect Service, regardless
of whether the user agent is an embodiment.

If the answer is yes to all of the questions as asked above,
then in some embodiments the Redirect Service sends 5740
(in response to the HTTP request for the indirect Fragment
Hyperlink) a document to the user agent that explains that he
has clicked on a link designed to take him directly to specific
content within the target document and that his user agent
(browser) can be upgraded or extended to process such Frag-
ment Hyperlinks, or to better process such Fragment Hyper-
links if the user agent is an old version of an embodiment. It
then gives him buttons to perform the upgrade, see more
information, ask him again later, or to not ask him this in the
future.

If the user requested 5745 more information, an upgrade,
or an extension, then activate 5750 an upgrade URI for the
URI Service in the same window. This activation requests an
upgrade or extension, but there is no guarantee that this will
happen (e.g., the user could decide against an upgrade or the
upgrade could fail). In some embodiments any upgrade
occurs asynchronously with this activity. Thus, once an
upgrade has been requested, the Fragment Hyperlink activa-
tion halts, before the user has actually upgraded anything. In
the document served up by the upgrade site of the URI Ser-
vice, the user will decide whether to perform the upgrade or
extension. Ifhe does choose to upgrade or extend a user agent,
but it is not possible to upgrade the already running user agent
without restarting it, or if the upgrade is to another user agent
(another piece of software) entirely, then the upgrade is per-
formed and the appropriate user agent is started. For some
user agents it is possible to upgrade and then either reload the
prior state or, in some cases, to upgrade the running process
without ever shutting it down. The latter is done in some
embodiments for those user agents for which it is possible.

If the user asked 5745 to be reminded later or to not be
asked in the future (i.e., he did not ask for more information,
an upgrade, or an extension) then based on the user’s
response, set 5760 the variables in persistent memory (such as
a cookie) for this current domain, that establish whether the
user is to be reminded in the future and the current time stamp.
Then activate 5770 the mapped Fragment URI or the Con-
ventional Fragment URI (as appropriate based on the capa-
bilities of the user agent) by script based redirection from the
scripts of the URI Service document from which the user
expressed his decision. Note that setting 5750 the persistent
memory need not occur if the user requested more informa-
tion or an update; if he follows through with a successful
update the information becomes superfluous, and if he does
not follow through or the update failed then the reason the
update failed is unknown and it is inappropriate to make any
change of state; thus the user will get another opportunity the
next time he activates such a hyperlink.

FIG. 58 illustrates a typical physical architecture for real-
izing embodiments. Embodiments include a communications

5

10

15

20

25

30

35

40

45

50

55

60

65

150

capability that enables the sending and receiving of messages
between various elements of the physical architecture; in
some embodiments this communications capability is pro-
vided by the Internet switching network infrastructure 5865,
with attached Local Area Networks (LANs) 5855,5860,5870,
5890. Attached to some LANs 5860 are radio transmission
based (wireless) communications antenna devices 5850, that
enable communications without wires between user agent
wireless communication devices 5820 and the communica-
tions capability that in some embodiments (including the
physical architecture illustrated in FIG. 58) comprises the
Internet switching network 5865. In alternative embodiments
wireless communications are used also to communicate with
server devices. While this is a typical physical architecture, in
other embodiments the Internet switching network is not
utilized. For example, many phone companies are connected
to a worldwide circuit switched network that in some circum-
stances can complete long distance communications indepen-
dently of Internet facilities; such communications take place
on what are sometimes called dial-up networks.

Major communication end-points of this example physical
architecture are the user agent 5805, the URI Service server
5888, the Redirect Service server 5889, and the search engine
service 5895. In some embodiments the search engine service
can be an existing search service as a beneficial element in the
environment. In other embodiments the search engine service
provides specific new functionality to achieve additional ben-
efits. Both possibilities for search engine aspects of embodi-
ments have been described in detail previously. In some
embodiments the search engine service is combined physi-
cally with the URI Service, Redirect Service, or both; benefits
of embodiments having such a combination of services have
been previously described.

There may be any number of user agents in an implemen-
tation of this physical architecture, which for illustrative pur-
poses shows only one. User agents typically have one or more
screens 5846, which are a typical means by which a user agent
machine communicates visually to the user. The screen in
some embodiments is used for the user to communicate to the
device, typically using touch with fingers or stylus. In the
illustration the screen is shown as a separate single device, but
some devices have more than one screen and in some user
agent devices it is typical for one or two screens to be physi-
cally integral with the rest of the device 5805. For example, a
cell phone computation device typically has one or more
screens that are integral with the device, and such a device
may also have the ability to use a separate screen. Screens are
typically controlled by a video /O device 5840.

A speaker 5847 and microphone 5848 may be present on
user agent embodiments, and may be separate (as shown) or
physically integral with the user agent. In some embodiments
sound devices may be used to enter or receive textual infor-
mation; for example, by use of voice recognition and voice
synthesis techniques. In some embodiments a microphone
and speaker may be integrated physically into a single device
or may be connected to a user agent by wires (as shown) or by
wireless means; for example, Bluetooth wireless is often used
for such a connection because of its low power requirements.
Microphones and speakers are typically controlled by a sound
input/output device 5845.

In embodiments user agents comprise a CPU (central pro-
cessing unit) 5810 connected either separately (as shown) or
integrally with primary memory 5815 and memory act
together to provide direct control of user agent components
according to a particular physical arrangement of non-vola-
tile secondary storage 5835. While shown as a single unit, in
some embodiments the user agent comprises multiple CPUs.

US 9,356,574 B2

151

The particular non-volatile secondary storage physical
arrangement is in part set according to user agent software
5830; when non-volatile secondary storage is physically
arranged according to user agent software, and the CPU or
CPUs act according to that physical arrangement, the second-
ary storage is said to “hold” or “store” the user agent software
and the CPU is said to “run” the user agent software.

The user agent communicates with other elements of
embodiments through a wired communication device 5825, a
wireless communication device 5820, or both. Wired com-
munication devices in embodiments include any form of
physical guide for signals that stretches from both the device
and the recipient of communications. Thus embodiments may
have wired devices that include devices using copper wires
for electrical signals, fiber optics, or a microwave wave guide.
Ifthe devices send their signals without such a physical guide
from the sender to recipient of messages, then it is said to be
a wireless communication device, such signals are propa-
gated by means that include, without limitation, radio waves,
visible light, and sound.

While the servers shown 5888,5889 do not comprise wire-
less devices, in other embodiments the servers comprise wire-
less communications capabilities. Because servers are typi-
cally not mobile and wired communications are beneficially
cheaper and faster to devices fixed in place, wireless commu-
nications are not shown as typical of embodiments.

A URI Service server 5888 is shown, for convenience, as a
single device. However, in embodiments the service may
comprise many such servers and may be distributed physi-
cally across nations, continents, or world-wide. When it is
distributed widely, the service itself may be internally con-
nected via the Internet 5865.

A Redirect Service server 5889 is shown, for convenience,
as a single device. However, in embodiments the service may
comprise many such servers and may be distributed physi-
cally across nations, continents, or world-wide. When it is
distributed widely, the service itself may be internally con-
nected via the Internet 5865.

The URI Service servers and Redirect Service servers are
shown separate, but may operate on the same physical server
devices.

In embodiments, URI Service servers and Redirect Service
servers comprise a CPU (central processing unit) 5875 con-
nected either separately or integrally with primary memory
5878, which act together to provide direct control of server
components according to a particular physical arrangement
of non-volatile secondary storage 5883. While shown as a
single unit, in some embodiments the user agent comprises
multiple CPUs and may comprise separate memory compo-
nents attached to those CPUs. The particular non-volatile
secondary storage physical arrangement is in part set accord-
ing to URI Service software 5880 or Redirect Service soft-
ware 5885; when non-volatile secondary storage is physically
arranged according to such software, and the CPU or CPUs
act according to that physical arrangement, the secondary
storage is said to “hold” or “store” the software and the CPU
is said to “run” that software.

The URI Service servers and Redirect Service servers com-
municate with other elements of embodiments through a
wired communication device 5873 (although usually less
efficient wireless devices can be used). Wired communication
devices in embodiments include any form of physical guide
for signals that stretches from both the device and the recipi-
ent of communications. Thus embodiments may have wired
devices that include devices using copper wires for electrical
signals, fiber optics, or a microwave wave guide.

35

40

45

50

152

Those skilled in the art will appreciate that there are many
embodiments having physical realizations that differ from the
example physical architecture shown, and that differ from the
several alternative physical architectures explicitly described
in conjunction with FIG. 58 and previously, without departing
from the teachings herein.

Definitions

Canonical Form Transform: The Canonical Form Trans-
form of a string can be obtained using the following proce-
dure:

1. Transform the text using full case folding, which is a
mapping described by the Unicode Consortium as part
of the Unicode Standard version 6.2.0, available in
machine and human readable form in the document Pub-
lic/UNIDATA/CaseFolding.txt, found on the Unicode-
.org web site. This expands some ligatures and ligature-
like forms, and converts all characters that have case to
lower case.

2. Transform the output of step 1 to the standard NFKD
(Normalized Form Compatibility Decomposition) form,
as described in the Unicode consortium’s “Unicode
Standard Annex #15: Unicode Normalization Forms”,
found in the document reports/tr15, on the Unicode.org
web site. This is the standard normalization procedure
that expands Unicode ligatures and decomposes various
complex characters to their base characters followed by
combining characters. It does not convert to lower case,
which was done in step 1.

3. The non-starters (also called combining characters by
the Unicode Consortium) are removed. These include
the combining forms for diacritical marks, all of which
were separated out in step 2. The combining characters
that are removed are those that are marked “COMBIN-
ING” in the Unicode Consortium file found in the docu-
ment Public/UNIDATA/UnicodeData.txt on the Uni-
code.org web site.

4. Whitespace and punctuation characters are removed.
Specifically, the following

Unicode code units and code unit ranges are removed from
the sequence: \u0000-\u002£, \u003a-\w0040, \u005b-\u0060,
\u007b-\u00bf, \u00d7, \u00f7, \W055a, 1680, \ul80e,
\u2000-\u206f, ‘02420, 2422, \u2423, \u3000, \u3Olc,
\u3030, \ufes8, \ufe63, \ufeff, \uffod.

Those skilled in the art will appreciate that the same trans-
formation may be achieved by different rules applied in a
different order, and also that many different transformations
will provide similarly useful results.
canonical similarity: Canonical similarity is a binary relation-

ship that establishes whether a string is canonically similar

or canonically dissimilar to a base string. The following
definite procedure can be used to establish this relation-
ship.

1) If either the candidate string or the base string is not

UTF-16 Unicode encodings, then convert them to UTF-
16 Unicode encodings.

2) The UTF-16 Unicode encodings of the candidate string
and the base string are processed according to the
Canonical Form Transform to obtain the Canonical
Form Transform of the candidate string and the Canoni-
cal Form Transform of the base string.

3) The Levenshtein distance d between the Canonical Form
Transform of the candidate string and the Canonical
Form Transform of the base string is determined.

4) If the Levenshtein distance d is less than 25% of the
length of the Canonical Form Transform of the base
string in characters, then the candidate string is canoni-

US 9,356,574 B2

153

cally similar to the base string; otherwise, the candidate
string is canonically dissimilar to the base string.

Note that the Levenshtein distance d is zero in step 3 if the
Canonical Form Transform of the candidate string and the
Canonical Form Transform of the base string are identical.

A candidate string is canonically similar to a set of base
strings if it is canonically similar to any member string
belonging to the set of base strings; otherwise it is canonically
dissimilar to the set of base strings. If a set of base strings has
no member string, i.e., the set is empty, then no string is
canonically similar to the set.
clicking: The action of selecting the display element under the

current cursor location on the device’s display screen.

Doing so involves moving the cursor to the display element

of interest and pressing a mouse button, lightly tapping a

touch screen or similar actions.
distinguished: A part ofa document display is distinguished if

that part, including all of'its sub-parts, are set apart visually
so thata viewer can see that the part differs from the normal
(non-distinguished) form of display. Other forms of the
word ‘distinguish’ derive the expected meanings; for
example, to set a part of a document apart visually when
displaying the document is to distinguish that part, distin-
guishing a part of a document is the act of setting it apart
visually and that act distinguishes that part; once done that
part is distinguished and has been distinguished. If a sub-
part of a part is distinguished then the part is partially
distinguished, even if not all of its sub-parts are distin-
guished. For instance, a word is partially distinguished if
the first character of the word is highlighted. Verbal and
gerundial phrases have the expected meanings; for
example, distinguishing partially and partially distinguish-
ing a part are the act or acts of setting that part of a docu-
ment apart visually when displaying the document.

A visual component may be created and added to a display
in order to indicate a border or position in the display; useful
examples include the common editing practice of placing a
cursor at a position between two characters to indicate where
certain user inputs will take effect, or placing a red-line box
around a thumbnail image to draw attention to that particular
thumbnail. These added display elements may have dynamic
behavior such as blinking on and off or changing color. What
is distinguished or partially distinguished may be a matter of
convention specific to the product that provides such a dis-
play. The meaning of a cursor with particular shape added
between characters in a span of text could be different than
that for a cursor with another shape, and the meaning could be
sensitive to context. For example, matched left and right
boundary cursors generally have a defined meaning when the
left one occurs earlier than the right one in left-to-right text.
That might mean that all of the text between them is distin-
guished and is selected for editing operations. However, the
conventions of that particular display determine what is dis-
tinguished, would govern the meaning, and would need to be
learned by the user.

There are many commonly encountered ways of distin-
guishing the display of parts of documents, some of which
affect the display of the part itself and others that call attention
to that part. A visual object may be added that “floats over” the
display; this is not part of the display itself in the sense that it
does not take up space within the document display, but sets
some part of the display apart; e.g., by pointing to it with a
finger shaped cursor, with just the end of an acute triangular
shape, or with a barbed arrowhead shape. What is distin-
guished is a matter established between the designers of the
system and the users; if the end of such a floating visual object
is over a character in a word, it could mean that it distin-

10

15

20

25

30

35

40

45

50

55

60

65

154

guishes the whole word, just distinguishes the character, or
does something unusual and unique to that application, such
as distinguishing the word and any word immediately follow-
ing it. Such a floating object could contain text that clarifies
what the pointer indicates, or it could contain an arbitrary
annotation.

Note that a part of a document can be any subset, and not
necessarily only contiguous subsets. Thus, a character taken
from one word combined with another character from some-
where else in the document, further combined with an image
from yet elsewhere can constitute a part of the document, and
if any sub-part of that part is further distinguished then that
part is partially distinguished. Nevertheless, documents have
a Document Object Model (DOM) or a DOM can be created
for them, and the parts of the document have a defined order
relative to a document’s DOM instance. Given the defined
order from a document’s DOM, a part of a document is
contiguous if it consists of consecutive document sub-parts.
More particularly, a part of a document is contiguous if there
are left and right boundary positions in a DOM instance for
that document and that part includes everything between
them in the DOM instance. Highlighting a single character of
a document would generally distinguish that character and
partially distinguishes the document and any part that
includes the highlighted single character; it does not distin-
guish any part of the document that does not comprise the
highlighted single character.

Selecting a part of a document, as is done in a preparatory
step for copy and paste operations, generally distinguishes
that selected part. Similarly, highlighting a part generally
distinguishes that part. The convention for a particular appli-
cation could be that the distinguished part of a highlighted
document is everything that is not highlighted, or it could
even be that the distinguished part is a part immediately to the
right of the highlighted part. Note that details of a document
display could cause user confusion with respect to what is
distinguished; e.g., by using a highlighting color that is also
the background color. For brevity and clarity in subsequent
examples it is assumed that highlighting a part in any color
distinguishes that part and that other display alterations dis-
tinguish the part or parts having an altered appearance.

There are many other possible techniques for distinguish-
ing the display of a document part; boxing in the part using a
thin-line border, or the part’s text could be italicized, made
bold, or presented using a color that contrasts with the sur-
rounding text. Indenting and enclosing text in quotes are also
potentially techniques of distinguishing a document part.
Positioning a visual indicator at the beginning of a part, at the
end of a part, or at both the beginning and the end of a part, or
placing an indication that a position in the document is in the
interior of a part may partially distinguish that part. High-
lighting every other character or image in a span of text and
images within a document distinguishes each such high-
lighted character and image, and it partially distinguishes
each word having a highlighted character as well as partially
distinguishing the span. Highlighting only a subset of the
words from a span of text distinguishes the highlighted words
and partially distinguishes the span of text. Causing a part to
flash on and off or change colors dynamically distinguishes it.
Highlighting of key words from a search query within a
document snippet partially distinguishes the document snip-
pet in addition to distinguishing each highlighted word. Com-
binations of techniques for distinguishing a document part
may be used. For example, highlighting in yellow and red can
be used simultaneously. Or highlighting text and having an
object pointing to it simultaneously distinguishes that text.

US 9,356,574 B2

155

Similarly, selections, highlighting, and boxing can be used in
concert to distinguish parts of documents.

Moreover, a product could attach different meanings to
different techniques of distinguishing parts and use them
simultaneously in a display. For example, a display that dis-
tinguishes document snippets that are closely related to snip-
pets in a query result could highlight key words from the
query in red and the rest of the document snippet in yellow.
Such a display would distinguish the document snippets, and
the key words in the snippets, but it might not distinguish
instances ofthose key words appearing elsewhere in the docu-
ment. Even if the key words were highlighted in red wherever
they appeared, including outside the document snippets, the
document snippets would be visually distinguishable from all
other text since they would be highlighted using a different
color than that used for the key words. If just the key words
were distinguished, but only those instances appearing within
the document snippets, then the document snippets would be
partially distinguished and any key word appearing outside
the document snippets would not be distinguished. The vis-
ible portion of a document can be visually distinguished from
the rest of the document by virtue of being visible, and auto-
mated scrolling to make a particular part visible can usefully
distinguish or partially distinguish that part, along with what-
ever else becomes visible. Scrolling in this way can be used to
particular advantage in combination with other techniques for
distinguishing parts of documents. For example, distinguish-
ing a document snippet by highlighting or selecting it and also
scrolling to it can be a particularly useful technique of distin-
guishing snippets.
distinguishing context: A display of a document’s contents,

including any state affecting what is or is not distinguished,
a distinguishing manner, and a set or class of user inputs
(called the distinguishing inputs of the distinguishing con-
text) that can cause parts of the document to be distin-
guished or not distinguished in the display, are together a
distinguishing context. If a part of a document is either
distinguished or can become distinguished according to the
distinguishing manner and by the effects of some sequence
of the distinguishing inputs, then that part is distinguished
in the distinguishing context. The display of a document’s
contents is said to have a distinguishing context if it is the
display of that distinguished context. A particular display
of a document typically has many distinguishing contexts
because there are many combinations of different distin-
guishing inputs and different distinguishing manners. If a
visible part of document content is neither distinguished
nor partially distinguished in a distinguishing context, then
it is undistinguished in that distinguishing context. Only a
part of a document that is visible, or that can become
visible by scrolling or some other action to make it visible
to a user, can be distinguished or undistinguished; if it is
invisible then it is simply not part of the display of contents
and is neither distinguished nor undistinguished.

A typical Internet browser display of a typical Internet
HTML document has a distinguishing context that distin-
guishes no part of the document because use of the empty set
for the distinguishing inputs results in no part of the display
ever being distinguished by the distinguishing manner of
highlighting. That same browser display also has another
distinguishing context that distinguishes all possible select-
able parts of the document because a typical browser has a set
of'inputs allowing the user to make selections—which distin-
guishes each of those possible selections if the distinguishing
manner of the distinguishing context is the visual indication
of'selection. Similarly, a typical browser has “find” box func-
tionality, including the ability to enter arbitrary text into the

10

15

20

25

30

35

40

45

50

55

60

65

156

“find” box and “next” and “previous” buttons that cause
matches to the text in the “find” box to be located in the
document and selected for editing; thus, by including all of
these “find” box inputs in the distinguishing inputs, the typi-
cal browser display distinguishes the set of all possible strings
of'the document that can be found using the “find” box func-
tionality.

Note that a display may have state, external to the contents
of'a document, that affects what parts are distinguished, so the
contents of the “find” bar can be fixed in a distinguishing
context by not including inputs that change it in the distin-
guishing inputs. For example, a typical browser could have
the string “food bar” in its find-box by some prior automated
mechanism, so that pressing the “next” and “previous” but-
tons causes the display to find a next or previous match to
“food bar” and select it for editing; this distinguishes those
matching parts of the document without distinguishing, for
example, instances of “food in the bar”. The external state
need not be visible; for example, some external state could
comprise the text of one or more snippets from a search query
response and if there is an exact match of any such snippet
with a textual span from the document, then the display could
highlight or select that exact match. The content of the clip-
board is external state, and if pasting into the find box is
permitted, i.e., it is in the distinguishing inputs, and typing
arbitrary text into the find-box is not permitted, then the text
in the clipboard can be pasted into the find-box and then
instances of that text can be distinguished.

Distinguishing inputs can be provided that allow a user to
scroll between one distinguished document snippet and the
next. A distinguishing context that distinguishes a set of docu-
ment snippets can distinguish all of the document snippets
simultaneously, some of them simultaneously, or it can dis-
tinguish just one of the snippets at a time; for example, it can
do this if the distinguishing inputs allow user input to change
which of the set of snippets is distinguished. A distinguishing
context may provide for user input to cause scrolling in order
to make a particular one of a set of snippets visible in the
display. Since a user may scroll away from one or more parts
of'a document that are set apart visually, a display can provide
for user input to return, e.g., via scrolling, to one or more
distinguished parts of a document. Since some techniques of
setting parts of a document apart visually are transient, e.g.,
simply clicking on a browser display can cause a document
snippet that is selected for editing to no longer be selected and
hence not set apart visually at that moment, a display can also
provide inputs that re-distinguish and re-scroll to one or more
distinguished parts of the document.
distinguishing manner: There are many ways to distinguish

parts of a document in a display. These include use of

different highlight colors, different ways to point to parts,
different ways to draw a box around parts and other ways to
surround parts with added elements. Added elements for
distinguishing parts may have different appearances and
may themselves contain text including quotes from the
document or annotations. Such included text could attach
different meanings to different distinguished parts. Each

such way of distinguishing or combinations of ways, is a

distinguishing manner or a manner of distinguishing. A

combination of multiple distinguishing manners is also a

distinguishing manner.
document server: A device consisting of one or more CPUs,

some memory, access to persistent storage, and one or
more wired and/or wireless communication devices. It
receives requests for document content and transmits
responses that include requested document content using

US 9,356,574 B2

157

an electronic communication network. It can be configured
to act alone or in concert with other document servers.

document snippet: A triple consisting of a snippet, a docu-
ment, and the snippet’s location in the document. Since
documents can have duplicate content, two document snip-
pets can have the same snippet and document but different
locations.

path tag sequence: In an HTML, XML, or XHTML docu-
ment, a path tag sequence for a specific element of the
document is the ordered sequence of tags of the enclosing
elements, starting with the HTML, XML, or XHTML. root
element and ending with the tag of the specific element
being considered. For example, a particular character in a
particular word is embedded at some depth in enclosing
HTML elements; the path tag sequence for that particular
character is the sequence of tags, starting at the root, down
to the tag of the last HTML element that contains the
character. For an XHTML document the root element tag
name is “htm]” and the next for anything visible is “body”
(not all elements in “body” are visible). After that there are
alarge number of possible tag names such as “div”, “span”,
and “Ii”. Each of those elements in which the character is
embedded has a tag name, and together they define a
sequence of tag names. The path tag sequence for a char-
acter inthe document is the sequence oftag names from the
root to the innermost element that contains the character.
Similarly, a path tag sequence for a specific element node
of a DOM instance for an HTML document is the sequence
of'tags starting from the HTML root element tag, including
the tags of all of the ancestor nodes of the specific element
node, and ending with the tag of the specific element node.
The path tag sequence for a part of the document is the path
tag sequence starting at the root and ending with the tag of
the innermost element that comprises all of the sub-parts of
the part. Thus, the path tag sequence for a word ends with
the tag of the innermost element (or lowest level element
node in a DOM tree) that comprises all of the characters of
the word.

path tag set: The unordered set of tags, without repetition,
from a path tag sequence.

pressing: Pushing with a finger or a tool such as a stylus.

response snippet: If a snippet is found in or taken from a
search query response, then it is called a response snippet.
Response snippets are commonly sequences of text (i.e.,
strings).

search engine server: A device consisting of one or more
CPUs, some memory, access to persistent storage, and one
or more wired and/or wireless communication devices. It
receives search queries and transmits search results using
an electronic communication network. It can be configured
to act alone or in concert with other search engine servers
as part of a search engine service.

search engine service: One or more search engine servers
acting in concert to receive and respond to search queries.

single action: Single actions are acts performed to control or
provide useful input to a machine such as a user agent. In
general a single action is not usefully divisible into com-
ponent single actions. Single actions include clicking a
mouse, tapping a screen, pressing two fingers on a touch
screen, spreading two fingers previously pressed into a
touch screen, swiping a finger over a touch screen, and
pressing a key on a keyboard are all single actions. Move-
ment is a bit more complicated, on touch screen devices the
point of action is typically established by pressing a finger
or stylus, but a cursor is moved around in various ways
including mouse movement that comprises many smaller
movements so that the progress of the cursor or mouse

10

15

20

25

30

35

40

45

50

55

60

65

158

pointer can be tracked visually. When movement is the
effect of a contiguous set of such actions, i.e., that are not
punctuated by other non-movement actions, then the over-
all movement is counted as a single action. When counting
single actions of a sequence of single actions to achieve
some result, any initial movement is not counted since it is
presumably not known where anything is prior to initiation
of a sequence of single actions. However, if movement is
required after the first non-movement single action, then
the movements that occur before the next non-movement
single action is counted as one single action of movement.

snippet: a sequence of document parts consisting of text hav-
ing two or more words. Note that a snippet may include
non-character elements such as images. However, search
result snippets often comprise a textual character sequence
extracted from an original source document, without tak-
ing intervening non-textual parts.

tapping: Lightly striking a display screen with a finger or a
tool such as a stylus.

undistinguished retrieval: When a document is requested
from a document source, there is value if the source cannot
discern what parts of the document interest the user, what
part the user will automatically be directed to, or what parts
will automatically be distinguished. (This is discussed in
RFC 3986, “Uniform Resource Identifier (URI): Generic
Syntax”, section ‘3.5 Fragment™.) The source can discern
these if the act of making a request (either directly or
indirectly) and downloading the content conveys this infor-
mation to the source. For example, if the source of a docu-
ment were actively engaged in the process of distinguish-
ing display content, which it could do by altering document
content before sending it out, then that request would not
be a request for an undistinguished document and would
not protect the user’s privacy at arbitrary document
sources. This information could be conveyed to the source
either directly by the user agent or by some intermediary
such as a URI Service, Redirect Service or other service
that may receive the information. If no such information is
conveyed as part of the request and downloading process,
either directly from the user agent or indirectly, then the
document request and download is called an undistin-
guished retrieval of the document.

Appendix
The following documents and web pages are incorporated

by reference:

Daniel Lemire, Owen Kasen Recursive n-gram hashing is
pairwise independent, at best, Computer

Speech & Language 24 (4), pages 698-710, 2010.

Jonathan D. Cohen, Recursive hashing functions for n-grams,
ACM Trans. Inf. Syst. 15(3), 1997.

ECMA-182—Standard ECMA-182. Data Interchange on
12.7 mm 48-Track Magnetic Tape Cartridges—DLT1 For-
mat, December 1992.

Sebastian Hellmann, Jens Lehmann, and Soren Auer, NIF: An
ontology-based and linked-data-aware NLP Interchange
Format. This has been preliminarily ‘published’ on the
Internet and can be downloaded from the document papers/
2012/WWW_NIF/public.pdf, found on the web site at
svn.aksw.org.

RFC 3986/(2005)—Uniform Resource Identifier (URI):
Generic Syntax.

RFC 4648/(2006)—The Base 16, Base 32, and Base 64 Data
Encodings.

ITU-T Rec. X.680, X.681, X.682, X.683—ASN.1 standards

ITU-T Rec. X.691—PER encoding rules

Repurposing the Hash Sign for the New Web. W3C Working
Draft: Putative TAG Finding 15 Jan. 2011. This content is

US 9,356,574 B2

159

contained in document 2001/tag/2011/01/HashInURI-

20110115, found on the web site www.w3.org.

RDF Primer, W3C Recommendation, 10 Feb. 2004. This
content is contained in document TR/rdf-primer/found on
the www.w3.org web site.

The Unicode Standard Version 6.2.0 (Sep. 26, 2012). Specific
www.unicode.org content referenced includes:

a table containing the list of the individual Unicode char-
acters and their properties, last modified in 2012 Sep. 26
and contained in the document Public/UNIDATA/Uni-
codeData.txt, and

a table with the mapping from characters to their case-
folded forms, last modified 2012 Aug. 14, and contained
in the document Public/UNIDATA/CaseFolding.txt.

Unicode Standard Annex #15, UNICODE NORMALIZA-
TION FORMS, revision 37, 2012 Aug. 31. This is con-
tained in document reports/trl5, which can be found at the
web site www.unicode.org.

U.S. Pat. No. 5,446,888, Remote file transfer method and
apparatus.

XML XPointer Requirements Version 1.0, W3C Note 24 Feb.
1999. This is contained in the document TR/NOTE-xptr-
req, found on the web site www.w3.org.

The invention claimed is:
1. A system for search, retrieval, and display of information
in an electronic communication network, the system com-
prising:
one or more hardware-based processors and one or more
hardware-based memories storing computer-executable
instructions;
a user agent implemented by the computer-executable
instructions stored in the one or more hardware-based
memories, in the electronic communication network, the
user agent having one or more screens, that:
in response to a first query input, transmits a first search
query, receives a first query response document com-
prising a first set of one or more response snippets,
displays the first query response document in a first
response document display on the one or more
screens, in response to a first selection input received
within the first response document display wherein
the selection input comprises selection of a sourced
document, provides a first document display on the
one or more screens using a first client content version
of the sourced document, and

in response to a second query input transmits a second
search query, receives a second query response docu-
ment comprising a second set of one or more response
snippets, displays the second query response docu-
ment in a second response document display, in
response to a second selection input received within
the second response document display that comprises
selection of the sourced document, provides a second
document display on the one or more screens using a
second client content version of the sourced docu-
ment;

wherein:
in response to an action set comprising multiple single

actions , wherein the single actions comprise the first
selection input and zero or more additional inputs
permitted according to a set of distinguishing inputs
of a first distinguishing context of the first document
display, a first partially distinguished word is visibly
displayed and partially distinguished in the first docu-
ment display on the one or more screens, and the first
partially distinguished word is in a first matching

10

15

20

25

30

35

40

45

50

55

60

65

160

document snippet of the first client content version
that is canonically similar to the first set of one or
more response snippets;

a second partially distinguished word is partially distin-
guished in a second distinguishing context of the sec-
ond document display and is in a second matching
document snippet of the second client content version
that is canonically similar to the second set of one or
more response snippets;

a first set of cross matching document snippets, consist-
ing of the visible document snippets of the second
client content version that are canonically similar to
the first set of one or more response snippets, is non-
empty and its members are undistinguished in the
second distinguishing context;

a second set of cross matching document snippets, con-
sisting of the visible document snippets of the first
client content version that are canonically similar to
the second set of one or more response snippets, is
nonempty and its members are undistinguished in the
first distinguishing context; and

the text of a word that is undistinguished in the first
distinguishing context matches the text of the first
partially distinguished word.

2. The system of claim 1, wherein the action set comprises
no more than five single actions.

3. The system of claim 2, wherein the action set comprises
no more than three single actions.

4. The system of claim 3, wherein the action set comprises
only one single action.

5. The system of claim 4, wherein the effects of the one
single action being performed include activation of a hyper-
link.

6. The system of claim 4, wherein the second client content
version is different from the first client content version.

7. The system of claim 4, further comprising:

a search engine service in the electronic communication

network that:

in response to receiving the first search query generates
the first query response document comprising the first
set of one or more response snippets that are con-
structed using information from a first server content
version of the sourced document, and transmits the
first query response document;

in response to receiving the second search query gener-
ates the second query response document comprising
the second set of one or more response snippets that
are constructed using information from a second
server content version of the sourced document, and
transmits the second query response document;
wherein

the user agent transmits the first search query and the
second search query to the search engine service.

8. The system of claim 7, wherein the first server content
version is different from the second server content version.

9. The system of claim 7, wherein the first client content
version of the sourced document is a different version of the
document than the first server content version of the sourced
document.

10. The system of claim 4, wherein the text of a word in the
first search query is the same as the text of the first partially
distinguished word.

11. The system of claim 10, wherein the first client content
version of the sourced document is an HTML (Hypertext
Markup Language) document and the path tag set for the first
partially distinguished word in the first client content version

US 9,356,574 B2

161

is the same as the path tag set for the undistinguished word in
the first client content version.

12. The system of claim 11, wherein the path tag sequence
for the first partially distinguished word in the first client
content version is the same as the path tag sequence for the
undistinguished word in the first client content version.

13. The system of claim 7, wherein the search engine
service retrieves the first server content version of the sourced
document from a document source and in response to the first
selection input the user agent retrieves the first client content
version from the document source.

14. The system of claim 11, wherein the search engine
service retrieves the first server content version of the sourced
document from a document source and in response to the first
selection input the user agent retrieves the first client content
version from the document source.

15. The system of claim 13, wherein the retrieval of the first
client content version of the sourced document is an undis-
tinguished retrieval from the document source.

16. The system of claim 14, wherein the retrieval of the first
client content version of the sourced document is an undis-
tinguished retrieval from the document source.

17. The system of claim 4, wherein the first selection input
also selects a selected subset of the first set of one or more
response snippets that is nonempty, and the first matching
document snippet is canonically similar to the selected subset
of the first set of one or more response snippets.

18. The system of claim 17, wherein the selected subset
comprises all of the snippets of the first set of one or more
response snippets.

19. The system of claim 17, wherein the text of the first
matching document snippet matches the text of one of the
snippets of the selected subset of the first set of one or more
response snippets.

20. A method for search, retrieval, and display of informa-
tion on a user agent having one or more screens in an elec-
tronic communication network, the method comprising:

transmitting, in response to a first query input, a first search

query from the user agent;

receiving a first query response document comprising a

first set of one or more response snippets;

displaying the first query response document in a first

response document display on the one or more screens;
selecting a sourced document by receiving a first selection
input from within the first document display;
in response to the first selection input, providing a first
distinguishing context for a first document display of a
first client content version of the sourced document on
the one or more screens; in response to a second query
input, transmitting a second search query from the user
agent;
receiving a second query response document comprising a
second set of one or more response snippets;

displaying the second query response document in a sec-
ond response document display on the one or more
screens;
selecting the sourced document by receiving a second
selection input from within the first document display;

in response to the second selection input, providing a sec-
ond distinguishing context for a second document dis-
play of a second client content version of the sourced
document on the one or more screens;

distinguishing partially and displaying visibly a first par-

tially distinguished word in the first document display
on the one or more screens, in response to an action set
of' one and up to 6 single actions , which are the single
actions comprised by the first selection input and zero or

10

15

20

25

30

35

40

45

50

55

60

65

162

more single actions comprised by additional inputs per-
mitted according to the set of distinguishing inputs of a
first distinguishing context of the first document display,
where the first partially distinguished word is in a first
matching document snippet of the first client content
version that is canonically similar to the first set of one or
more response snippets;
distinguishing partially, in a second distinguishing context
of the second document display, a second partially dis-
tinguished word in a second matching document snippet
that is canonically similar to the second set of one or
more response snippets;
displaying, in the second document display and in a man-
ner that is not distinguishing according to the distin-
guishing manner of the second distinguishing context,
all of the one or more visible document snippets of the
second client content version that are canonically simi-
lar to the first set of one or more response snippets;

displaying, in the first document display and in a manner
that is not distinguishing according to the distinguishing
manner of the first distinguishing context, all of the one
or more visible document snippets of the first client
content version that are canonically similar to the second
set of one or more response snippets; and

displaying, in the first document display and in a manner

that is not distinguished according to the first distin-
guishing context, a word having text that matches the
text of the first partially distinguished word.

21. The method of claim 20, wherein the action set com-
prises no more than five single actions.

22. The method of claim 21, wherein the action set com-
prises no more than three single actions.

23. The method of claim 22, wherein the action set com-
prises only one single action.

24. The method of claim 23, wherein the effects of the
single action being performed include activation of a hyper-
link.

25. The method of claim 23, wherein the second client
content version is different from the first client content ver-
sion.

26. The method of claim 23, further comprising:

receiving the first search query at a search engine service;

constructing, in response to receiving the first search query,
the first set of one or more response snippets using
information from the first server content version of the
sourced document;

generating the first query response document comprising

the first set of one or more response snippets;
transmitting the second query response document from the
search engine service to the user agent;

receiving the second search query at the search engine

service;

constructing, in response to receiving the second search

query, the second set of one or more response snippets
using information from the second server content ver-
sion of the sourced document;

generating the second query response document compris-

ing the second set of one or more response snippets; and
transmitting the second query response document from the
search engine service to the user agent.

27. The method of claim 26, wherein the first server content
version is different from the second server content version.

28. The method of claim 26, wherein the first client content
version of the sourced document is a different version of the
document than the first server content version of the sourced
document.

US 9,356,574 B2

163

29. The method of claim 23, wherein the text of a word in
the first search query is the same as the text of the first partially
distinguished word.

30. The method of claim 29, wherein the first client content
version of the sourced document is an HTML (Hypertext
Markup Language) document and the path tag set for the first
partially distinguished word in the first client content version
is the same as the path tag set for the undistinguished word in
the first client content version.

31. The method of claim 30, wherein the path tag sequence
for the first partially distinguished word in the first client
content version is the same as the path tag sequence for the
undistinguished word in the first client content version.

32. The method of claim 26, further comprising:

retrieving the first server content version of the sourced

document from a document source to the search engine
service; and

retrieving, in response to the first selection input, the first

client content version from the document source to the
user agent.

33. The method of claim 30, further comprising:

retrieving the first server content version of the sourced

document from a document source to the search engine
service; and

10

15

20

164

retrieving, in response to the first selection input, the first
client content version from the document source to the
user agent.

34. The method of claim 32, wherein retrieving the first
server content version of the sourced document accomplishes
an undistinguished retrieval from the document source.

35. The method of claim 33, wherein retrieving the first
client content version of the sourced document accomplishes
an undistinguished retrieval from the document source.

36. The method of claim 23, further comprising:

selecting a nonempty selected subset of the first set of one

or more response snippets in response to receiving the
first selection input, and wherein the first matching
document snippet is canonically similar to the selected
subset of the first set of one or more response snippets.

37. The method of claim 36, wherein the selected subset
comprises all of the snippets of the first set of one or more
response snippets.

38. The method of claim 24, wherein the text of the first
matching document snippet matches the text of one of the
snippets of the selected subset of the first set of one or more
response snippets.

